Pour un nombre irrationnel et un nombre réel , on considère la constante d’approximation non-homogène
For an irrational real number and real number we consider the inhomogeneous approximation constant
@article{JTNB_2001__13_2_539_0, author = {Pinner, Christopher G.}, title = {More on inhomogeneous diophantine approximation}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {539--557}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {2}, year = {2001}, zbl = {1014.11043}, mrnumber = {1879672}, language = {en}, url = {archive.numdam.org/item/JTNB_2001__13_2_539_0/} }
Pinner, Christopher G. More on inhomogeneous diophantine approximation. Journal de Théorie des Nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 539-557. http://archive.numdam.org/item/JTNB_2001__13_2_539_0/
[1] The inhomogeneous minima of binary quadratic forms. Part I, Acta Math. 87 (1952), 259-323; Part II, Acta Math. 88 (1952), 279-316; Part III, Acta Math. 92 (1954), 199-234; Part IV (without second author) Acta Math. 92 (1954), 235-264. | Zbl 0056.27301
, ,[2] On inhomogeneous Diophantine approximation. J. Number Theory 48 (1994), 259-283. | MR 1293862 | Zbl 0820.11042
, , ,[3] Non-homogeneous binary quadratic forms. Nederl. Akad. Wetensch. Proc. 50 (1947), 741-749, 909-917 = Indagationes Math. 9 (1947), 351-359, 420-428. | MR 23856 | Zbl 0060.11906
,[4] On inhomogeneous diophantine approximation and the Nishioka - Shiokawa- Tamura algorithm. Acta Arith. 86 (1998), 305-324. | MR 1659089 | Zbl 0930.11049
,[5] On inhomogeneous Diophantine approximation, preprint.
, , ,[6] Non-homogeneous quadratic forms, I, II. Nederl. Akad. Wetensch. Proc. 51, (1948) 396-404, 470-481. = Indagationes Math. 10 (1948), 142-150, 164-175. | MR 25517 | Zbl 0030.01901
,