On s’intéresse au développement en base des premiers termes de la suite exponentielle . En utilisant un résultat dû à Kiss et Tichy, nous montrons que le nombre moyen d’occurrences d’un bloc de chiffres donné est égal asymptotiquement à sa valeur supposée. Sous une hypothèse plus forte nous montrons un résultat similaire en ne considérant seulement les , avec , premiers termes de la suite .
We consider the -ary digital expansion of the first terms of an exponential sequence . Using a result due to Kiss and Tichy [8], we prove that the average number of occurrences of an arbitrary digital block in the last digits is asymptotically equal to the expected value. Under stronger assumptions we get a similar result for the first digits, where is a positive constant. In both methods, we use estimations of exponential sums and the concept of discrepancy of real sequences modulo plays an important role.
@article{JTNB_2002__14_2_477_0, author = {Fuchs, Michael}, title = {Digital expansion of exponential sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {477--487}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, mrnumber = {2040688}, zbl = {1072.11006}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2002__14_2_477_0/} }
Fuchs, Michael. Digital expansion of exponential sequences. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 477-487. http://archive.numdam.org/item/JTNB_2002__14_2_477_0/
[1] Transcendental number theory. Cambridge University Press, Cambridge - New York - Port Chester - Melbourne - Sydney, 1990. | MR | Zbl
,[2] Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 19-62. | MR | Zbl
, ,[3] Digital blocks in linear numeration systems. In Number Theory in Progress (Proceedings of the Number Theory Conference Zakopane 1997, K. Gyôry, H. Iwaniec, and J. Urbanowicz edt.), de Gruyter, Berlin, New York, 1999, 607-633. | MR | Zbl
, , ,[4] Distribution of the values of q-additive functions on polynomial sequences. Acta Math. Hung. 68 (1995), 353-361. | MR | Zbl
, ,[5] A result on the digits of an. Acta Arith. 64 (1993), 331-339. | MR | Zbl
, , ,[6] Sequences, Discrepancies and Applications. Lecture Notes Math. 1651, Springer, 1997. | MR | Zbl
, ,[7] On a problem in the theory of uniform distributions I, II. Indagationes Math. 10 (1948), 370-378, 406-413. | MR
, ,[8] A discrepancy problem with applications to linear recurrences I,II. Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 135-138; no. 6, 191-194. | MR | Zbl
, ,[9] Trigonometric sums with exponential functions and the distribution of signs in repeating decimals. Mat. Zametki 8 (1970), 641-652 = Math. Notes 8 (1970), 831-837. | MR | Zbl
,[10] On the distribution of digits in periodic fractions. Matem. Sbornik 89 (1972), 654-670. | MR | Zbl
,[11] Exponential sums and their applications. Kluwer Acad. Publ., North-Holland, 1992. | MR | Zbl
,[12] On the Distribution of Pseudo-Random Numbers Generated by the Linear Congruential Method II. Math. Comp. 28 (1974), 1117-1132. | MR | Zbl
,[13] On the Distribution of Pseudo-Random Numbers Generated by the Linear Congruential Method III. Math. Comp. 30 (1976), 571-597. | MR | Zbl
,