Linear independence of continued fractions
Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, p. 489-495

The main result of this paper is a criterion for linear independence of continued fractions over the rational numbers. The proof is based on their special properties.

Nous donnons un critère d'indépendance linéaire sur le corps des rationnels qui s'applique à une famille donnée de nombres réels dont les développements en fractions continues satisfont certaines conditions.

@article{JTNB_2002__14_2_489_0,
     author = {Han\v cl, Jaroslav},
     title = {Linear independence of continued fractions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {2},
     year = {2002},
     pages = {489-495},
     zbl = {1067.11039},
     mrnumber = {2040689},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2002__14_2_489_0}
}
Hančl, Jaroslav. Linear independence of continued fractions. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 489-495. http://www.numdam.org/item/JTNB_2002__14_2_489_0/

[1] P. Bundschuh, Transcendental continued fractions. J. Number Theory 18 (1984), 91-98. | MR 734440 | Zbl 0531.10035

[2] H. Davenport, K.F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167. | MR 77577 | Zbl 0066.29302

[3] G.M. Fichtengolc, Lecture on Differential and lntegrational Calculus II (Russian). Fizmatgiz, 1963.

[4] J. Hancl, Linearly unrelated sequences. Pacific J. Math. 190 (1999), 299-310. | MR 1722896 | Zbl 1005.11033

[5] J. Hancl, Continued fractional algebraic independence of sequences. Publ. Math. Debrecen 46 (1995), 27-31. | MR 1316646 | Zbl 0862.11045

[6] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers. Oxford Univ. Press, 1985. | MR 568909

[7] H.P. Schlickewei, A.J. Van Der Poorten, The growth conditions for recurrence sequences. Macquarie University Math. Rep. 82-0041, North Ryde, Australia, 1982.