We complete our previous determination of the torsion primes of elliptic curves over cubic number fields, by showing that is not one of those.
On achève de dresser la liste des nombres premiers de torsion de courbes elliptiques sur les corps de nombres cubiques, en montrant que n’en fait pas partie.
@article{JTNB_2003__15_3_831_0, author = {Parent, Pierre}, title = {No $17$-torsion on elliptic curves over cubic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {831--838}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {3}, year = {2003}, mrnumber = {2142238}, zbl = {1072.11037}, language = {en}, url = {http://archive.numdam.org/item/JTNB_2003__15_3_831_0/} }
TY - JOUR AU - Parent, Pierre TI - No $17$-torsion on elliptic curves over cubic number fields JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 831 EP - 838 VL - 15 IS - 3 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2003__15_3_831_0/ LA - en ID - JTNB_2003__15_3_831_0 ER -
Parent, Pierre. No $17$-torsion on elliptic curves over cubic number fields. Journal de théorie des nombres de Bordeaux, Volume 15 (2003) no. 3, pp. 831-838. http://archive.numdam.org/item/JTNB_2003__15_3_831_0/
[1] Formal groups and L-series. Comment. Math. Helvetici 65 (1990), 318-333. | MR | Zbl
, ,[2] On the theory of commutative formal groups. J. Math. Soc. Japan 22 (1970), 213-246. | MR | Zbl
,[3] Hyperelliptic modular curves. Tsukuba J. Math. 15 no. 2 (1991), 413-423. | MR | Zbl
, ,[4] Torsion points on elliptic curves over all quadratic fields. Duke Math. J. 53 no. 1 (1986), 157-162. | MR | Zbl
,[5] p-adic Hodge theory and values of zeta-functions of modular forms. To appear in Astérisque. | Numdam | MR | Zbl
,[6] Modular curves and the Eisenstein ideal. Publications mathématiques de l'I.H.E.S. 47 (1977), 33-186. | Numdam | MR | Zbl
,[7] Torsion des courbes elliptiques sur les corps cubiques. Ann. Inst. Fourier 50 (2000), 723-749. | Numdam | MR | Zbl
,