Soit une substitution de Pisot unimodulaire sur un alphabet à lettres et soient les fractales de Rauzy associées. Dans le présent article, nous souhaitons étudier les frontières () de ces fractales. Dans ce but, nous définissons un graphe, appelé graphe de contact de et noté . Si satisfait une condition combinatoire appelée condition de super coïncidence, le graphe de contact peut être utilisé pour établir un système auto-affine dirigé par un graphe dont les attracteurs sont des morceaux des frontières . De ce système dirigé par un graphe, nous déduisons une formule simple pour la dimension fractale de , dans laquelle les valeurs propres de la matrice d’adjacence de interviennent.
Un avantage du graphe de contact est sa structure relativement simple, ce qui rend possible sa construction immédiate pour une grande classe de substitutions. Dans cet article, nous construisons explicitement le graphe de contact pour une classe de substitutions de Pisot qui sont reliées aux -développements par rapport à des unités Pisot cubiques. En particulier, nous considérons des substitutions de la forme
où . Il est bien connu que ces substitutions satisfont la condition de super coïncidence mentionnée plus haut. Donc nous pouvons donner une formule explicite pour la dimension fractale des frontìeres des fractales de Rauzy associées à ces substitutions.
Let be a unimodular Pisot substitution over a letter alphabet and let be the associated Rauzy fractals. In the present paper we want to investigate the boundaries () of these fractals. To this matter we define a certain graph, the so-called contact graph of . If satisfies a combinatorial condition called the super coincidence condition the contact graph can be used to set up a self-affine graph directed system whose attractors are certain pieces of the boundaries . From this graph directed system we derive an easy formula for the fractal dimension of in which eigenvalues of the adjacency matrix of occur.
An advantage of the contact graph is its relatively simple structure, which makes it possible to construct it for large classes of substitutions at once. In the present paper we construct the contact graph explicitly for a class of unimodular Pisot substitutions related to -expansions with respect to cubic Pisot units. In particular, we deal with substitutions of the form
where . It is well known that these substitutions satisfy the above mentioned super coincidence condition. Thus we can give an explicit formula for the fractal dimension of the boundaries of the Rauzy fractals related to these substitutions.
@article{JTNB_2006__18_2_487_0, author = {Thuswaldner, J\"org M.}, title = {Unimodular {Pisot} substitutions and their associated tiles}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {487--536}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.556}, zbl = {05135401}, mrnumber = {2289436}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.556/} }
TY - JOUR AU - Thuswaldner, Jörg M. TI - Unimodular Pisot substitutions and their associated tiles JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 487 EP - 536 VL - 18 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.556/ DO - 10.5802/jtnb.556 LA - en ID - JTNB_2006__18_2_487_0 ER -
%0 Journal Article %A Thuswaldner, Jörg M. %T Unimodular Pisot substitutions and their associated tiles %J Journal de théorie des nombres de Bordeaux %D 2006 %P 487-536 %V 18 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.556/ %R 10.5802/jtnb.556 %G en %F JTNB_2006__18_2_487_0
Thuswaldner, Jörg M. Unimodular Pisot substitutions and their associated tiles. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 487-536. doi : 10.5802/jtnb.556. http://archive.numdam.org/articles/10.5802/jtnb.556/
[1] Akiyama, S. Self affine tilings and Pisot numeration systems. In Number Theory and its Applications (1999), K. Győry and S. Kanemitsu, Eds., Kluwer, pp. 1–17. | MR | Zbl
[2] Akiyama, S. On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Japan 54, 2 (2002), 283–308. | MR | Zbl
[3] Akiyama, S., Sadahiro, T. A self-similar tiling generated by the minimal Pisot number. Acta Math. Info. Univ. Ostraviensis 6 (1998), 9–26. | MR | Zbl
[4] Arnoux, P., Berthé, V., Ei, H., Ito, S. Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions. In Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA. Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 059–078 (electronic). | MR | Zbl
[5] Arnoux, P., Berthé, V. Siegel, A. Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319, 1-3 (2004), 145–176. | MR | Zbl
[6] Arnoux, P. Ito, S. Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8, 2 (2001), 181–207. Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000). | MR | Zbl
[7] Barge, M. Diamond, B. Coincidence for substitutions of Pisot type. Bull. Soc. Math. France 130, 4 (2002), 619–626. | Numdam | MR | Zbl
[8] Barge, M. Kwapisz, J. Geometric theory of unimodular Pisot substitutions. Preprint.
[9] Berthé, V. Siegel, A. Purely periodic beta-expansions in the Pisot non-unit case. Preprint.
[10] Berthé, V. Siegel, A. Tilings associated with beta-numeration and substitutions. Integers 5 (2005), no. 3, A2, (electronic). | MR | Zbl
[11] Canterini, V. Siegel, A. Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13, 2 (2001), 353–369. | Numdam | MR | Zbl
[12] Canterini, V. Siegel, A. Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353, 12 (2001), 5121–5144 (electronic). | MR | Zbl
[13] Deliu, A., Geronimo, J., Shonkwiler, R. Hardin, D. Dimension associated with recurrent self similar sets. Math. Proc. Camb. Philos. Soc. 110 (1991), 327–336. | MR | Zbl
[14] Dumont, J. M. Thomas, A. Digital sum moments and substitutions. Acta Arith. 64 (1993), 205–225. | MR | Zbl
[15] Falconer, K. J. The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103 (1988), 339–350. | MR | Zbl
[16] Falconer, K. J. Fractal Geometry. John Wiley and Sons, Chichester, 1990. | MR | Zbl
[17] Falconer, K. J. The dimension of self-affine fractals II. Math. Proc. Camb. Phil. Soc. 111 (1992), 169–179. | MR | Zbl
[18] Falconer, K. J. Techniques in Fractal Geometry. John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 1997. | MR | Zbl
[19] Feng, D.-J., Furukado, M., Ito, S. Wu, J. Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces. Tsukuba J. Math. 30 (2006), 195–224. | MR | Zbl
[20] Fogg, N. P. Substitutions in dynamics, arithmetics and combinatorics. Vol. 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. | MR | Zbl
[21] Frougny, C. Solomyak, B. Finite beta-expansions. Ergodic Theory Dynam. Systems 12, 4 (1992), 713–723. | MR | Zbl
[22] Gröchenig, K. Haas, A. Self-similar lattice tilings. J. Fourier Anal. Appl. 1 (1994), 131–170. | MR | Zbl
[23] Holton, C. Zamboni, L. Q. Geometric realizations of substitutions. Bull. Soc. Math. France 126, 2 (1998), 149–179. | Numdam | MR | Zbl
[24] Ito, S. Kimura, M. On Rauzy fractal. Japan J. Indust. Appl. Math. 8, 3 (1991), 461–486. | MR | Zbl
[25] Ito, S. Rao, H. Atomic surfaces, Tilings and coincidence I. Irreducible case. Israel J. Math., to appear. | MR | Zbl
[26] Ito, S. Sano, Y. Substitutions, atomic surfaces, and periodic beta expansions. In Analytic number theory (Beijing/Kyoto, 1999), vol. 6 of Dev. Math. Kluwer Acad. Publ., Dordrecht, 2002, pp. 183–194. | MR | Zbl
[27] Lind, D. Marcus, B. An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge, 1995. | MR | Zbl
[28] Mauldin, R. D. Williams, S. C. Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988), 811–829. | MR | Zbl
[29] Messaoudi, A. Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor. Nombres Bordeaux 10, 1 (1998), 135–162. | Numdam | MR | Zbl
[30] Messaoudi, A. Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95, 3 (2000), 195–224. | MR | Zbl
[31] Mossé, B. Recognizability of substitutions and complexity of automatic sequences. Bull. Soc. Math. Fr. 124, 2 (1996), 329–346. | Numdam | MR | Zbl
[32] Parry, W. On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. | MR | Zbl
[33] Queffélec, M. Substitution dynamical systems—spectral analysis. Vol. 1294 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987. | Zbl
[34] Rauzy, G. Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 2 (1982), 147–178. | Numdam | MR | Zbl
[35] Sano, Y., Arnoux, P. Ito, S. Higher dimensional extensions of substitutions and their dual maps. J. Anal. Math. 83 (2001), 183–206. | MR | Zbl
[36] Scheicher, K. Thuswaldner, J. M. Canonical number systems, counting automata and fractals. Math. Proc. Cambridge Philos. Soc. 133, 1 (2002), 163–182. | MR | Zbl
[37] Scheicher, K. Thuswaldner, J. M. Neighbours of self-affine tiles in lattice tilings. In Proceedings of the Conference “Fractals in Graz” (2002), P. Grabner and W. Woess, Eds., pp. 241–262. | MR | Zbl
[38] Siegel, A. Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dynam. Systems 23, 4 (2003), 1247–1273. | MR | Zbl
[39] Siegel, A. Pure discrete spectrum dynamical system and periodic tiling associated with a substitution. Ann. Inst. Fourier (Grenoble) 54, 2 (2004), 341–381. | Numdam | MR | Zbl
[40] Sirvent, V. F. Wang, Y. Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206, 2 (2002), 465–485. | MR | Zbl
[41] Solomyak, B. Substitutions, adic transformations, and beta-expansions. In Symbolic dynamics and its applications (New Haven, CT, 1991). Vol. 135 of Contemp. Math. Amer. Math. Soc., Providence, RI, 1992, pp. 361–372. | MR | Zbl
[42] Thurston, W. Groups, tilings and finite state automata. AMS Colloquium Lecture Notes, 1989.
[43] Vince, A. Digit tiling of euclidean space. In Directions in Mathematical Quasicrystals (Providence, RI, 2000), Amer. Math. Soc., pp. 329–370. | MR | Zbl
Cité par Sources :