@article{M2AN_1974__8_2_119_0, author = {\v{Z}en{\'\i}\v{s}ek, Alexander}, title = {A general theorem on triangular finite $C^{(m)}$-elements}, journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique}, pages = {119--127}, publisher = {Dunod}, address = {Paris}, volume = {8}, number = {R2}, year = {1974}, mrnumber = {388731}, zbl = {0321.41003}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1974__8_2_119_0/} }
TY - JOUR AU - Ženíšek, Alexander TI - A general theorem on triangular finite $C^{(m)}$-elements JO - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique PY - 1974 SP - 119 EP - 127 VL - 8 IS - R2 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_1974__8_2_119_0/ LA - en ID - M2AN_1974__8_2_119_0 ER -
%0 Journal Article %A Ženíšek, Alexander %T A general theorem on triangular finite $C^{(m)}$-elements %J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique %D 1974 %P 119-127 %V 8 %N R2 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_1974__8_2_119_0/ %G en %F M2AN_1974__8_2_119_0
Ženíšek, Alexander. A general theorem on triangular finite $C^{(m)}$-elements. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Tome 8 (1974) no. R2, pp. 119-127. http://archive.numdam.org/item/M2AN_1974__8_2_119_0/
[1] A refined triangular plate bending finite element Int. J. Num. Meth. Engng., 1969, 1, 101-122.
,[2] Triangular elements in the finite element method. Math. Comp., 1970, 24, 809-820. | MR | Zbl
and ,[3] Piecewise polynomial interpolations in the finite element method. Apl.Mat., 1973, 18, 146-160. | MR | Zbl
,[4] An analysis of the finite element method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. | MR | Zbl
and ,[5] Interpolation polynomials on the triangle. Numer. Math., 1970, 15, 283-296. | MR | Zbl
,[6] Polynomial approximation on tetrahedrons in the finite element method.J. Approx. Theory, 1973, 7, 334-351. | MR | Zbl
,