The finite element method for ill-posed problems
RAIRO. Analyse numérique, Tome 11 (1977) no. 3, pp. 271-278.
@article{M2AN_1977__11_3_271_0,
     author = {Natterer, Frank},
     title = {The finite element method for ill-posed problems},
     journal = {RAIRO. Analyse num\'erique},
     pages = {271--278},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {11},
     number = {3},
     year = {1977},
     mrnumber = {519587},
     zbl = {0369.65012},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1977__11_3_271_0/}
}
TY  - JOUR
AU  - Natterer, Frank
TI  - The finite element method for ill-posed problems
JO  - RAIRO. Analyse numérique
PY  - 1977
SP  - 271
EP  - 278
VL  - 11
IS  - 3
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://archive.numdam.org/item/M2AN_1977__11_3_271_0/
LA  - en
ID  - M2AN_1977__11_3_271_0
ER  - 
%0 Journal Article
%A Natterer, Frank
%T The finite element method for ill-posed problems
%J RAIRO. Analyse numérique
%D 1977
%P 271-278
%V 11
%N 3
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://archive.numdam.org/item/M2AN_1977__11_3_271_0/
%G en
%F M2AN_1977__11_3_271_0
Natterer, Frank. The finite element method for ill-posed problems. RAIRO. Analyse numérique, Tome 11 (1977) no. 3, pp. 271-278. http://archive.numdam.org/item/M2AN_1977__11_3_271_0/

1. A. K. Aziz and I. Babuska, Survey Lectures on the Mathematical Foundations of the Finite Element Method. In : Aziz, A. K. (ed.) : The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, 1972. | MR | Zbl

2. I. Cea, Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. | MR | Zbl

3. J. N. Franklin. On Tikhonov's Method for Ill-Posed Problems. Math. Comp. 28. 1974, p. 889-907 | MR | Zbl

4. B. Guenther, E. K. Killian, K. T. Smith and S. L. Wagner, Reconstruction of objects form Radiographs and the Location of Brain Tumors. Proc. at. Acad. Sci. USA. 71, 1974 p. 4884-4886. | MR

5. L. L. Lions et E. Magnes, Problème avec limites non homogènes et applications, vol. 1. Dunod, Paris, 1968. | Zbl

6. D. Ludwig, The Radon Transform on Euclidean Space. Comm. Pure Applied Math. 19, 1966, 49-81. | MR | Zbl

7. R. Mittra and C. A. Klein, Stability and Convergence of Moment Method Solutions. In : MITTRA, R. (ed) : Numerical and Asymptotic Techniques in Electromagnetics, Spinger, 1975.

8. D. L. Philipps. A Technique for the Numerical Solution of Certain Integral Equations ofthe First Kind. J. Ass. Comp. Mach. 9, 1962, p. 84-97. | MR | Zbl

9. G. Ribière, Régularisation d'opérateurs. R.I.R.O., 1, 1967, p. 57-79. | Numdam | MR | Zbl

10. A. N. Tikhonov, The Regularization of Incorrectly Posed Problems. Dokl. Akad. Nauk SSSR, 153, 1963, p. 42-52. | Zbl