Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 21 (1987) no. 3, p. 361-404
@article{M2AN_1987__21_3_361_0,
     author = {Added, St\'ephane and Added, H\'el\`ene},
     title = {Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {21},
     number = {3},
     year = {1987},
     pages = {361-404},
     mrnumber = {908237},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1987__21_3_361_0}
}
Added, Stéphane; Added, Hélène. Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 21 (1987) no. 3, pp. 361-404. http://www.numdam.org/item/M2AN_1987__21_3_361_0/

[1] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, C.P.A.M. 34 (1981) pp.481-524. | MR 615627 | Zbl 0476.76068

[2] S. Kainerman and A. Majda, Compressible and incompressible fluids, C.P.A.M. 35 (1982) pp. 629-651. | MR 668409 | Zbl 0478.76091

[3] T. Nishida and A. Matsumura, The initial valueproblem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ. 20-1 (1980) pp. 67-104. | MR 564670 | Zbl 0429.76040

[4] A. Lagha, Limite des équations d'un fluide compressible lorsque la compressibilité tend vers 0, Pré-pub. Math. Univ. Paris Nord, Fasc. n° 37.

[5] R. Teman, The evolution Navier-Stokes equations, North-Holland (1977) pp. 427-443.

[6] A. Majda, Compressible fluid flow and Systems of conservation laws in several space variables, Univ. of California, Berkeley. | Zbl 0537.76001

[7] H. Added and S. Added, Equations of Langmuir's turbulence and non linear chrödinger équation, smoothness and approximation, Pré-pub. Math. Univ. Paris Nord. | Zbl 0655.76044

[8] S. Klainerman, Global existence for non linear wave equations, C.P.A.M. 33 (1980) pp. 43-101. | MR 544044 | Zbl 0405.35056

[9] A. Friedman, Partial differential equations, Holt, Rinehart and Winston (1969). | MR 445088 | Zbl 0224.35002

[10] T. Kato, Non stationary flows of viscous and idéal fluids in R3, Functional Analysis 9 (1972), pp. 296-305. | MR 481652 | Zbl 0229.76018