@article{M2AN_1990__24_2_265_0, author = {Suri, Manil}, title = {The $p$-version of the finite element method for elliptic equations of order $2l$}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {265--304}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {24}, number = {2}, year = {1990}, mrnumber = {1052150}, zbl = {0711.65094}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1990__24_2_265_0/} }
TY - JOUR AU - Suri, Manil TI - The $p$-version of the finite element method for elliptic equations of order $2l$ JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1990 SP - 265 EP - 304 VL - 24 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1990__24_2_265_0/ LA - en ID - M2AN_1990__24_2_265_0 ER -
%0 Journal Article %A Suri, Manil %T The $p$-version of the finite element method for elliptic equations of order $2l$ %J ESAIM: Modélisation mathématique et analyse numérique %D 1990 %P 265-304 %V 24 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1990__24_2_265_0/ %G en %F M2AN_1990__24_2_265_0
Suri, Manil. The $p$-version of the finite element method for elliptic equations of order $2l$. ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 2, pp. 265-304. http://archive.numdam.org/item/M2AN_1990__24_2_265_0/
[1] The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990).
and ,[2] Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. | MR | Zbl
and ,[3] The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. | MR | Zbl
and ,[4] 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. | Numdam | MR | Zbl
and ,[5] Lectures notes on finite element analysis, In préparation.
and ,[6] The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. | MR | Zbl
, and ,[7] Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | Zbl
and ,[8] Multivariate Splines, SIAM, Philadelphia, 1988. | MR | Zbl
,[9] The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. | MR | Zbl
,[10] The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. | MR | Zbl
,[11] Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. | MR | Zbl
and ,[12] The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. | MR | Zbl
and ,[13] The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. | Zbl
and ,[14] The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. | Zbl
and ,[15] Inequalitie, Cambridge University Press, Cambridge, 1934. | JFM | Zbl
, and ,[16] The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. | MR | Zbl
and ,[17] Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. | MR | Zbl
,[18] Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. | Zbl
and ,[19] A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. | Zbl
,[20] Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11.
,[21] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. | MR | Zbl
,[22] Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). | MR | Zbl
,