@article{M2AN_1991__25_4_425_0, author = {Micchelli, Charles A. and Utreras, Florencio I.}, title = {Smoothing and interpolation in a convex subset of a {Hilbert} space : {II.} {The} semi-norm case}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {425--440}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {25}, number = {4}, year = {1991}, mrnumber = {1108584}, zbl = {0741.65045}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1991__25_4_425_0/} }
TY - JOUR AU - Micchelli, Charles A. AU - Utreras, Florencio I. TI - Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 425 EP - 440 VL - 25 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1991__25_4_425_0/ LA - en ID - M2AN_1991__25_4_425_0 ER -
%0 Journal Article %A Micchelli, Charles A. %A Utreras, Florencio I. %T Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 425-440 %V 25 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1991__25_4_425_0/ %G en %F M2AN_1991__25_4_425_0
Micchelli, Charles A.; Utreras, Florencio I. Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 4, pp. 425-440. http://archive.numdam.org/item/M2AN_1991__25_4_425_0/
[1] Constrained interpolation and smoothing, Constr Approx, 2 (1986), 129-152. | MR | Zbl
, and ,[2] Approximation et Optimization, Herman, Paris, 1972.
,[3] Constrained LP approximation, Constr Approx, 1 (1985), 93-102. | MR | Zbl
, , and ,[4] Smoothing and interpolation in a convex subset of a Hilbert space, SIAM J. Sci. Statist. Comput, 9 (1988), 728-746. | MR | Zbl
and ,[5] Convex Analysis, Princeton University Press, Princeton, N. J., 1970. | MR | Zbl
,[6] Smoothing noisy data under monotonicity constraints existence, characterization and convergence, rates Numer. Math., 74 (1985), 611-625 | EuDML | MR | Zbl
,[7] The operator pseudoinverse in control and systems identification, in Generalized Inverses and Applications, eds Z. Nashed, Academie Press, New York, 1973. | MR | Zbl
and ,[8] Constrained best approximation in Hilbert space, Constr. Approx., 6 (1990), 35-64. | MR | Zbl
, and ,[9] On the characterization of non-negative volume matching surface splines, J. Approx. Theory, 31 (1987), 1-10. | MR | Zbl
and ,