@article{M2AN_1994__28_7_815_0, author = {Estep, Donald and French, Donald}, title = {Global error control for the continuous {Galerkin} finite element method for ordinary differential equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {815--852}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {7}, year = {1994}, mrnumber = {1309416}, zbl = {0822.65054}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_7_815_0/} }
TY - JOUR AU - Estep, Donald AU - French, Donald TI - Global error control for the continuous Galerkin finite element method for ordinary differential equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 815 EP - 852 VL - 28 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_7_815_0/ LA - en ID - M2AN_1994__28_7_815_0 ER -
%0 Journal Article %A Estep, Donald %A French, Donald %T Global error control for the continuous Galerkin finite element method for ordinary differential equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 815-852 %V 28 %N 7 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_7_815_0/ %G en %F M2AN_1994__28_7_815_0
Estep, Donald; French, Donald. Global error control for the continuous Galerkin finite element method for ordinary differential equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 7, pp. 815-852. http://archive.numdam.org/item/M2AN_1994__28_7_815_0/
[1] The Finite Element Method for Elliptic Problems. North-Holland, New York. | MR | Zbl
, 1987,[2] Error estimates and automatic time step control for nonlinear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23. | MR | Zbl
, , 1987,[3] Adaptive finite element methods for parabolic problems I a linear model problem, SIAM J. Numer. Anal., 28, 43-77. | MR | Zbl
, , 1991,[4] Adaptive finite element methods for parabolic problems II optimal error estimates in L∞(L2) and L∞(L∞), preprint # 1992-09, Chalmers University of Technology. | MR | Zbl
, , 1992,[5] Adaptive finite element methods for parabolic problems III time steps variable in space, in preparation.
, ,[6] Adaptive finite element methods for parabolic problems IV nonlinear problems, Preprint # 1992-44, Chalmers Umversity of Technology. | MR | Zbl
, , 1992,[7] Adaptive finite element methods for parabolic problems V. long-time integration, preprint # 1993-04, Chalmers University of Technology. | MR | Zbl
, , 1993,[8] A posteriori error bounds and global error control for approximations of ordinary differential equations, SIAM J. Numer. Anal. (to appear). | MR | Zbl
,[9] The dynamical behavior of the discontinuous Galerkin method and related difference schemes, preprint. | MR | Zbl
, ,[10] Long time behaviour ofarbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, preprint. | MR | Zbl
, ,[11] Global dynamics of finite element in time approximations to nonlinear evolution problems, International Conference on Innovative Methods in Numerical Analysis, Bressanone, Italy.
, , 1992,[12] Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comp., 39, 271-295. | MR | Zbl
, , 1990,[13] Ordinary Differential Equations, John Wiley and Sons, Inc., New York. | MR | Zbl
, 1980,[14] Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926. | MR | Zbl
, 1988,[15]
, 1990, Personal communication.[16] Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematical Sciences 10, Springer-Verlag, New York, 1974. | MR | Zbl
, 1974,