A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
ESAIM: Modélisation mathématique et analyse numérique, Volume 30 (1996) no. 6, pp. 711-729.
@article{M2AN_1996__30_6_711_0,
     author = {Glowinski, Roland and Rieder, Andreas and Wells, Raymond O. and Xiaodong Zhou},
     title = {A wavelet multigrid preconditioner for {Dirichlet} boundary value problems in general domains},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {711--729},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {30},
     number = {6},
     year = {1996},
     mrnumber = {1419935},
     zbl = {0860.65121},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1996__30_6_711_0/}
}
TY  - JOUR
AU  - Glowinski, Roland
AU  - Rieder, Andreas
AU  - Wells, Raymond O.
AU  - Xiaodong Zhou
TI  - A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1996
SP  - 711
EP  - 729
VL  - 30
IS  - 6
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1996__30_6_711_0/
LA  - en
ID  - M2AN_1996__30_6_711_0
ER  - 
%0 Journal Article
%A Glowinski, Roland
%A Rieder, Andreas
%A Wells, Raymond O.
%A Xiaodong Zhou
%T A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1996
%P 711-729
%V 30
%N 6
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1996__30_6_711_0/
%G en
%F M2AN_1996__30_6_711_0
Glowinski, Roland; Rieder, Andreas; Wells, Raymond O.; Xiaodong Zhou. A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains. ESAIM: Modélisation mathématique et analyse numérique, Volume 30 (1996) no. 6, pp. 711-729. http://archive.numdam.org/item/M2AN_1996__30_6_711_0/

[1] G. Beylkin, 1992, On the representation of operators in bases of compactly supported wavelets, SIAM J. Numerical Analysis, 6, pp. 1716-1740. | MR | Zbl

[2] Ph. G. Ciarlet, 1987, The finite element methods for elliptic problems, North-Holland. | MR | Zbl

[3] I. Daubechies, 1988, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, pp. 906-966. | MR | Zbl

[4] P. J. Davis, 1979, Circulant Matrices, John Wiley & Sons, New York. | MR | Zbl

[5] T. Eirola, 1992, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal. 23(4), pp. 1015-1030. | MR | Zbl

[6] R. Glowinski, J. Periaux, M. Ravachol, T. W. Pan, R. O. Jr. Wells and X. Zhou, 1993, Wavelet methods in computational fluid dynamics. In M. Y. Hussaini et al., editor, Algorithmic Trends in Computational Fluid Dynamics, New York, pp. 259-276, Springer-Verlag. | MR

[7] R. Glowinski, 1984, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag, New York. | MR | Zbl

[8] W. Hackbusch, 1985, Multi Grid Methods and Applications, Springer Series in Computational Mathematics. Springer-Verlag, New York. | MR | Zbl

[9] W. Hackbusch, 1994, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Springer Vetlag, New York. | MR | Zbl

[10] M. R. Hestenes and E. Stiefel, 1952, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standads 49, pp. 409-436. | MR | Zbl

[11] A. Latto, H. L. Resnikoff and E. Tenenbaum, 1992, The evaluation of connection coefficients of compactly supported wavelets. In Y. Maday, editor, Proceedtngs of the French-USA Workshop on Wavelets and Turbulence, June 1991, New York, Princeton University, Springer-Verlag.

[12] S. Mallat, 1989, Multiresolution approximation and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc., 315, pp. 69-87. | MR | Zbl

[13] J. Weiss, 1992, Wavelets and the study of two dimensional turbulence. In Y. Maday, editor, Proceedings of the French USA Workshop on Wavelets and Turbulence June 1991, New York, Princeton University, Springer Verlag.

[14] R. O. Wells and Xiaodong Zhou, 1992, Representing the geometry or domains by wavelets with applications to partial differential equations. In J. Warren, editor, Curves and Surfaces in Computer Graphics III, volume 1834, pp. 23-33. SPIE.

[15] R. O. Wells and Xiaodong Zhou, 1995, Wavelet solutions for the Dirichlet problem, Numer. Math., 70, pp. 379-396. | MR | Zbl

[16] R. O. Wells and Xiaodong Zhou, 1994, Wavelet interpolation and approximate solutions of elliptic partial differential equations. In R. Wilson and E. A. Tanner, editors, Noncompact Lie Croups, Kluwer, to appear Proceedings of NATO Advanced Research Workshop. | MR | Zbl

[17] P. Wesseling, 1991, An Introduction to MultiGrid Methods, Pure & Applied Mathematics, A Wiley Interscience Series of Text, Monographs & Tracts John Wiley & Sons, New York. | MR | Zbl