A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 32 (1998) no. 4, p. 391-404
@article{M2AN_1998__32_4_391_0,
     author = {Wardi, S.},
     title = {A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {32},
     number = {4},
     year = {1998},
     pages = {391-404},
     zbl = {0916.76066},
     mrnumber = {1636360},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_4_391_0}
}
Wardi, S. A convergence result for an iterative method for the equations of a stationary quasi-newtonian flow with temperature dependent viscosity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 32 (1998) no. 4, pp. 391-404. http://www.numdam.org/item/M2AN_1998__32_4_391_0/

[1] R. A. Adams, Sobolev Spaces, Academic press. (1975). | MR 450957 | Zbl 0314.46030

[2] P. Avenas, J. F. Agassant, J. Sergent, La mise en forme des matières plastiques, Lavoisier (1982).

[3] J. Baranger, A. Mikelic, Stationary solutions to a quasi-Newtonian flow with viscous heating, Mathematical Models and Methods in applied Sciences, vol. 5-N, pp. 725 738 (1995). | MR 1348583 | Zbl 0838.76003

[4] G. Cimatti, The stationary thermistor problem with a current limiting device, Proc. Royal. Soc. Edinburgh, Sect. A, 116 (1990), pp. 79-84. | MR 1076354 | Zbl 0745.35042

[5] R. Dautray, J. L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 2, "L'opérateur de Laplace", Masson (1987). | MR 918560 | Zbl 0664.47003

[6] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential. Equations of Second Order, Springer. (1983). | MR 737190 | Zbl 0562.35001

[7] S. D. Howison, J. F. Rodrigues, M. Shillor, Stationary solutions to the Thermistor problem, Journal Math. Anal., Appl., 174 (1993), pp. 573-588. | MR 1215637 | Zbl 0787.35033

[8] O. A. Ladyzenskaya, N. N. Ural'Ceva, Equations aux dérivées partielles de type elliptique, Dunod, Paris (1968). | MR 239273 | Zbl 0164.13001

[9] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villard, Paris (1969). | MR 259693 | Zbl 0189.40603

[10] J. L. Lions, E. Magenes, Problemi ai limiti non omogenei, Ann. Sc. Norm. Sup. Pisa, 15 (1961), 39-110. | Numdam | MR 146526

[11] N. G. Meyers, An Lp-estimate for the gradient of solutions of the second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 17 (1963), pp. 189-206. | Numdam | MR 159110 | Zbl 0127.31904

[12] R. Temam, Navier-Stokes equations, North-Holland (1979). | Zbl 0426.35003

[13] V. V. Zhikov, S. Sian Lin Fan, On some variational problems, Prepulication of Pedacogical. University of Vladimir, Russia (1995).