The grazing collisions asymptotics of the non cut-off Kac equation
M2AN - Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 6, pp. 763-772.
@article{M2AN_1998__32_6_763_0,
     author = {Toscani, G.},
     title = {The grazing collisions asymptotics of the non cut-off {Kac} equation},
     journal = {M2AN - Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {763--772},
     publisher = {Elsevier},
     volume = {32},
     number = {6},
     year = {1998},
     zbl = {0912.76081},
     mrnumber = {1652617},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1998__32_6_763_0/}
}
TY  - JOUR
AU  - Toscani, G.
TI  - The grazing collisions asymptotics of the non cut-off Kac equation
JO  - M2AN - Modélisation mathématique et analyse numérique
PY  - 1998
DA  - 1998///
SP  - 763
EP  - 772
VL  - 32
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/item/M2AN_1998__32_6_763_0/
UR  - https://zbmath.org/?q=an%3A0912.76081
UR  - https://www.ams.org/mathscinet-getitem?mr=1652617
LA  - en
ID  - M2AN_1998__32_6_763_0
ER  - 
%0 Journal Article
%A Toscani, G.
%T The grazing collisions asymptotics of the non cut-off Kac equation
%J M2AN - Modélisation mathématique et analyse numérique
%D 1998
%P 763-772
%V 32
%N 6
%I Elsevier
%G en
%F M2AN_1998__32_6_763_0
Toscani, G. The grazing collisions asymptotics of the non cut-off Kac equation. M2AN - Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 6, pp. 763-772. http://archive.numdam.org/item/M2AN_1998__32_6_763_0/

[1] A. A. Arsen'Ev and O. E. Buryak, " On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation". Math. USSR Sbornik, 69 (2), 465-478 (1991). | MR | Zbl

[2] E. A. Carlen, E. Gabetta, G. Toscani, " Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas", to appear on Comm. Math. Phys. (1997). | MR | Zbl

[3] C. Cercignani, The Boltzmann equation and its applications. Springer, New York (1988). | MR | Zbl

[4] P. Degond and B. Lucquin-Desreux, " The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case", Math. Mod. Meth. in appl. Sci., 2 (2), 167-182 (1992). | MR | Zbl

[5] L. Desvillettes, " On asymptotics of the Boltzmann equation when the collisions become grazing", Transp. theory and stat. phys., 21 (3), 259-276 (1992). | MR | Zbl

[6] L. Desvillettes, " About the regularizing properties of the non-cut-off Kac equation", Comm. Math. Phys., 168 (2), 417-440 (1995). | MR | Zbl

[7] E. Gabetta, L. Pareschi, " About the non cut-off Kac equation: Uniqueness and asymptotic behaviour", Comm. Appl. Nonlinear Anal., 4, 1-20 (1997). | MR | Zbl

[8] E. Gabetta, G. Toscani, B. Wennberg, " Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation", J. Stat. Phys. 81, 901-934 (1995). | MR | Zbl

[9] T. Goudon, " On the Boltzmann equation and its relations to the Landau-Fokker-Planck equation: influence of grazing collisions". To appear in C. R. Acad. Sci., 1997. | Zbl

[10] M. Kac, Probability and related topics in the physical sciences, New York (1959). | MR | Zbl

[11] P. L. Lions, " On Boltzmann and Landau equations", Phil. Trans. R. Soc. Lond., A(346), 191-204 (1994). | MR | Zbl

[12] P. L. Lions, G. Toscani, " A sthrenghtened central limit theorem for smooth densities", J. Funct. Anal. 128, 148-167 (1995). | MR | Zbl

[13] J. Nash, " Continuity of solutions of parabolic and elliptic equations", Amer. J. Math. 80, 931-957 (1958). | MR | Zbl

[14] G. Toscani, " On regularity and asymptotic behaviour of a spatially homogeneous Maxwell gas". Rend. Circolo Mat. Palermo, Serie II, Suppl. 45, 649-622 (1996). | MR | Zbl

[15] G. Toscani, " Sur l'inégalité logarithmique de Sobolev", To appear in C. R. Acad. Sci., 1997. | MR | Zbl

[16] C. Villani, " On the Landau equation: weak stability, global existence", Adv. Diff. Eq. 1 (5), 793-818 (1996). | MR | Zbl

[17] C. Villani, " On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations". | Zbl