@article{M2AN_1998__32_6_773_0, author = {Mazure, Marie-Laurence and Laurent, Pierre-Jean}, title = {Nested sequences of {Chebyshev} spaces and shape parameters}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {773--788}, publisher = {Elsevier}, volume = {32}, number = {6}, year = {1998}, mrnumber = {1652613}, zbl = {0922.65010}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1998__32_6_773_0/} }
TY - JOUR AU - Mazure, Marie-Laurence AU - Laurent, Pierre-Jean TI - Nested sequences of Chebyshev spaces and shape parameters JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 773 EP - 788 VL - 32 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1998__32_6_773_0/ LA - en ID - M2AN_1998__32_6_773_0 ER -
%0 Journal Article %A Mazure, Marie-Laurence %A Laurent, Pierre-Jean %T Nested sequences of Chebyshev spaces and shape parameters %J ESAIM: Modélisation mathématique et analyse numérique %D 1998 %P 773-788 %V 32 %N 6 %I Elsevier %U http://archive.numdam.org/item/M2AN_1998__32_6_773_0/ %G en %F M2AN_1998__32_6_773_0
Mazure, Marie-Laurence; Laurent, Pierre-Jean. Nested sequences of Chebyshev spaces and shape parameters. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 6, pp. 773-788. http://archive.numdam.org/item/M2AN_1998__32_6_773_0/
[1] de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, Constructive Approximation 12 (1996), 385-408. | MR | Zbl
,[2] Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Mathematicae 42 (1991), 123-136. | MR | Zbl
, , and ,[3] A new approach to Tchebycheffian B-splines, in Curves and Surfaces with Applications to CAGD, Vanderbilt University Press (1997), 35-42. | MR | Zbl
and ,[4] On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987), 313-341. | MR | Zbl
, and ,[5] Recurrence relations for Tchebycheffian B-splines, Journal d'Analyse Mathématique 51 (1988), 118-138. | MR | Zbl
and ,[6] Total Positivity, Stanford University Press, Stanford, 1968. | MR | Zbl
,[7] Tchebycheff Systems, Wiley Interscience, New York, 1966. | MR | Zbl
and ,[8] Chebyshevian spline functions, SIAM Journal Numerical Analysis 3 (1966), 514-543. | MR | Zbl
and ,[9] Q-splines, Numerical Algorithms 1 (1991), 45-74. | MR | Zbl
and ,[10] Non affine blossoms and subdivision for Q-splines, in Math. Methods in Computer Aided Geometric Design II, Academic Press, New York, 1992, 367-380. | MR
, and ,[11] Chebyshev splines and shape parameters, RR 980M IMAG, Université Joseph Fourier, Grenoble, September 1997, Numerical Algorithms 15 (1997), 373-383. | MR | Zbl
, and ,[12] Shape effects with polynomial Chebyshev splines, in Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, 1997, 255-262. | MR | Zbl
, and ,[13] A recurrence relation for Chebyshevian B-splines, Constructive Approximation 1 (1985), 155-173. | MR | Zbl
,[14] Blossoming of Chebyshev splines, In Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, 1995, 355-364. | MR | Zbl
,[15] Chebyshev spaces, RR 952M IMAG, Université Joseph Fourier, Grenoble, January 1996.
,[16] Chebyshev blossoming, RR 953M IMAG, Université Joseph Fourier, Grenoble, January 1996.
,[17] Blossoming: a geometric approach, RR 968M IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Constructive Approximation. | MR | Zbl
,[18] Vandermonde type determinants and blossoming, The Fourth International Conference on Mathematical Methods for Curves and Surfaces, Lillehammer, Norway, July 3-8, 1997, RR 979M IMAG, Université Joseph Fourier, Grenoble, September 1997, Advances in Computational Math. 8 (1998), 291-315. | MR | Zbl
,[19] Affine and non affine blossoms, in Computational Geometry, World Scientific, 1993, 201-230. | MR
and ,[20] Marsden identities, blossoming and de Boor-Fix formula, in Advanced Topics in Multivariate Approximation, World Scientific Pub., 1996, 227-242. | MR
and ,[21] Piecewise smooth spaces in duality: application to blossoming, RR696-M, IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Journal of Approximation Theory. | MR | Zbl
and ,[22] Polynomial Chebyshev Splines, to appear. | MR | Zbl
and ,[23] Tchebycheff curves, in Total Positivity and its Applications, Kluwer Academic Pub. (1996), 187-218. | MR | Zbl
and ,[24] Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Math. 65, SIAM, Philadelphie, 1995. | MR | Zbl
,[25] The geometry of Tchebycheffian splines, Computer Aided Geometric Design 10 (1993), 181-210. | MR | Zbl
,[26] Helix splines as an example of affine Tchebycheffian splines, Advances in Computational Math. 2 (1994), 123-142. | MR | Zbl
and ,[27] Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323-358. | MR | Zbl
,[28] Spline Functions: Basic Theory, Wiley Interscience, New York, 1981. | MR | Zbl
,[29] New algorithms and techniques for Computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling and Numerical Analysis 26 (1992), 149-176. | Numdam | MR | Zbl
,[30] Symmetric Tchebycheffian B-splines schemes, in Curves and Surfaces in Geometric Design, A. K. Peters, Wellesley, MA, 1994, 483-490. | MR | Zbl
and ,