Incompressibility in rod and shell theories
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 2, p. 289-304
@article{M2AN_1999__33_2_289_0,
     author = {Antman, Stuart S. and Schuricht, Friedemann},
     title = {Incompressibility in rod and shell theories},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {2},
     year = {1999},
     pages = {289-304},
     zbl = {0955.74041},
     mrnumber = {1700036},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_2_289_0}
}
Antman, Stuart S.; Schuricht, Friedemann. Incompressibility in rod and shell theories. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 2, pp. 289-304. http://www.numdam.org/item/M2AN_1999__33_2_289_0/

[1] S.S. Antman, Nonlinear Problems of Elasticity. Springer-Verlag (1995). | MR 1323857 | Zbl 0820.73002

[2] S.S. Antman, Convergence properties of hiérarchies of dynamical theories of rods and shells. Z. Angew. Math. Phys. 48 (1997) 874-884. | MR 1488685 | Zbl 0896.73029

[3] S.S. Antman and R.S. Marlow, Material constraints, Lagrange multipliers, and compatibility. Applications to rod and shell theories. Arch. Rational Mech. Anal. 116 (1991) 257-299. | MR 1132762 | Zbl 0769.73012

[4] P.G. Ciarlet, Mathematical Elasticity, Volume II: Theory of Plates. North-Holland (1997). | MR 1477663 | Zbl 0953.74004

[5] P.G. Ciarlet, Mathematical Elastictty, Volume III: Theory of Shells. North-Holland (1999). | MR 1757535

[6] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077

[7] P. Le Tallec, Numerical methods for solids in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions Eds. North-Holland (1994) 465-622. | MR 1307410 | Zbl 0875.73234

[8] R. Saxton, Existence of solutions for a finite nonlinearly hyperelastic rod. J. Math Anal Appl. 105 (1985) 59-75. | MR 773572 | Zbl 0561.73046

[9] C. Schwab and S. Wright, Boundary layers of hierarchical beam and plate models. J. Elasticity 38 (1995) 1-40. | MR 1323554 | Zbl 0834.73040

[10] L. Trabucho and J. M. Viano, Mathematical Modelling of Rods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions Eds. North-Holland 4 (1996) 487-974. | MR 1422507 | Zbl 0873.73041

[11] R. Temam, Navier-Stokes Equations. North-Holland (1977). | MR 603444 | Zbl 0383.35057

[12] T. Wright, Nonlinear waves in rods : results for incompressible elastic materials. Stud. Appl. Math. 72 (1984) 149-160. | MR 782278 | Zbl 0558.73020