Fluids with anisotropic viscosity
ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 2, pp. 315-335.
@article{M2AN_2000__34_2_315_0,
     author = {Chemin, Jean-Yves and Desjardins, Beno{\^\i}t and Gallagher, Isabelle and Grenier, Emmanuel},
     title = {Fluids with anisotropic viscosity},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {315--335},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {2},
     year = {2000},
     mrnumber = {1765662},
     zbl = {0954.76012},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_2000__34_2_315_0/}
}
TY  - JOUR
AU  - Chemin, Jean-Yves
AU  - Desjardins, Benoît
AU  - Gallagher, Isabelle
AU  - Grenier, Emmanuel
TI  - Fluids with anisotropic viscosity
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 315
EP  - 335
VL  - 34
IS  - 2
PB  - Dunod
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_2000__34_2_315_0/
LA  - en
ID  - M2AN_2000__34_2_315_0
ER  - 
%0 Journal Article
%A Chemin, Jean-Yves
%A Desjardins, Benoît
%A Gallagher, Isabelle
%A Grenier, Emmanuel
%T Fluids with anisotropic viscosity
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 315-335
%V 34
%N 2
%I Dunod
%C Paris
%U http://archive.numdam.org/item/M2AN_2000__34_2_315_0/
%G en
%F M2AN_2000__34_2_315_0
Chemin, Jean-Yves; Desjardins, Benoît; Gallagher, Isabelle; Grenier, Emmanuel. Fluids with anisotropic viscosity. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 2, pp. 315-335. http://archive.numdam.org/item/M2AN_2000__34_2_315_0/

[1] A. Babin, A. Mahalov and B. Nicolaenko, Global Splitting, Integrability and Regularity of 3D Euler and Navier Stokes Equations for Uniformly Rotating Fluids. Eur. J. Mech. 15 (1996) 291-300. | MR | Zbl

[2] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'École Normale Superieure 14 (1981) 209-246. | Numdam | MR | Zbl

[3] J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque 230 (1995). | Numdam | MR | Zbl

[4] J.-Y. Chemin, A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures. Appl. 76 (1997) 739-755. | MR | Zbl

[5] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differential Equations 121 (1992) 314-328. | MR | Zbl

[6] J.-Y. Chemin and B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, preprint of Universite d'Orsay (1999). | MR | Zbl

[7] B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation. SIAM. J. Appl. Math. (to appear). | MR | Zbl

[8] B. Desjardins and E. Grenier, Dérivation of quasi-geostrophic potential vorticity equations. Adv. in Differential Equations 3 (1998), No. 5, 715-752. | MR | Zbl

[9] B. Desjardins and E. Grenier, Low Mach number limit of compressible flows in the whole space. Proceedmgs of the Royal Society of London A. 455 (1999) 2271-2279. | MR | Zbl

[10] H. Fujita and T. Kato, On the Navier Stokes initial value problem I. Archiv for Rational Mechanic Analysis 16 (1964) 269-315. | MR | Zbl

[11] I. Gallagher, The Tridimensional Navier-Stokes Equations with Almost Bidimensional Data: Stability, Uniqueness and Life Span. International Mathematics Research Notices 18 (1997) 919-935. | MR | Zbl

[12] H. P. Greenspan, The theory of rotating fluids. Cambridge monographs on mechanics and applied mathematics (1969). | Zbl

[13] E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, No. 5-6, (1997) 953-975. | MR | Zbl

[14] D. Iftimie, La résolution des équations de Navier Stokes dans des domaines minces et la limite quasigéostrophique. Thèse de l'Université Paris 6 (1997).

[15] D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. | EuDML | MR | Zbl

[16] J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1933) 193-248. | JFM

[17] J. Pedlosky, Geophysical fluid dynamics, Springer (1979). | Zbl

[18] J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension. Duke Mathematical Journal 49 (1982) 397-475. | MR | Zbl

[19] M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires. Annales de l'Institut Fourier 36 (1986) 39-82. | EuDML | Numdam | MR | Zbl