@article{M2AN_2000__34_5_1087_0, author = {Croisille, Jean-Pierre}, title = {Finite volume box schemes and mixed methods}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1087--1106}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {5}, year = {2000}, mrnumber = {1837769}, zbl = {0966.65082}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_5_1087_0/} }
TY - JOUR AU - Croisille, Jean-Pierre TI - Finite volume box schemes and mixed methods JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 1087 EP - 1106 VL - 34 IS - 5 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_5_1087_0/ LA - en ID - M2AN_2000__34_5_1087_0 ER -
Croisille, Jean-Pierre. Finite volume box schemes and mixed methods. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 5, pp. 1087-1106. http://archive.numdam.org/item/M2AN_2000__34_5_1087_0/
[1] Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. | MR | Zbl
, , and ,[2] Mixed and non-conformmg finite elements methods: implementation, post processing and error estimates. RAIRO - Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | MR | Zbl
and ,[3] Error-Bounds for Finite Elements Method. Numer. Math. 16 (1971) 322-333. | MR | Zbl
,[4] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | MR | Zbl
and ,[5] Connection between finite volume and mixed finite element methods. RAIRO - Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | MR | Zbl
, and ,[6] Un problème variationnel abstrait. Application à une méthode de collocation pour les équations de Stokes. C. R. Acad. Sci. Paris, t. 303, Série I 19 (1986) 971-974. | MR | Zbl
, and ,[7] Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. | MR | Zbl
, and ,[8] Finite Elements. Cambridge Univ. Press (1997). | MR | Zbl
,[9] The mathematical theory of finite element methods. Texts Appl. Math. 15 (1994) Springer, New-York. | MR | Zbl
and ,[10] On the existence, umqueness and approximation of saddle-point problems, arising from lagrangian multipliers. RAIRO 8 (1974) R-2, 129-151. | Numdam | MR | Zbl
,[11] Mixed and Hybrid Finite Element Methods. Springer Series Comp. Math. 15, Springer Verlag, New-York (1991). | MR | Zbl
and ,[12] Two families of Mixed Finite Element for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | MR | Zbl
, and ,[13] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | MR | Zbl
, and ,[14] A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations. AIAA-83-0126 (1983).
, and ,[15] Box-schemes for First Order Partial Differential Equations. Adv. Comp. Fluid Dynamics, Gordon Breach Publ. (1995) 307-331.
,[16] A Conservative Box-scheme for the Euler Equations. Int. J. Num. Meth. Fluids (to appear) | MR | Zbl
,[17] A "box-scheme" for the Euler equations. Lect. Notes Math. 1270, Springer-Verlag, Berlin (1987) 82-99. | MR | Zbl
and ,[18] Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. Math. Model. Numer. 33 (1999) 493-516. | Numdam | MR | Zbl
, and ,[19] Schémas boîte en réseau triangulaire, Rapport technique 18/3446 EN (1992), ONERA, unpublished.
,[20] Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale n°4 (1990) 21-46. | Zbl
,[21] Étude d'une famille de schémas boîtes à deux points et application a la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale n° 5 (1991) 31-44.
,[22] Finite Volume Box Schemes on triangular meshes. Math. Model Numer. 32 (1998) 631-649. | Numdam | MR | Zbl
and ,[23] Finite Volume Box Schemes, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications. Hermes, Paris (1999). | MR | Zbl
,[24] Conforming and non conformmg finite element methods for solvmg the stationary Stokes equations I. RAIRO 7 (1973) R-3, 33-76. | Numdam | MR | Zbl
and ,[25] Finite volumes and mixed Petrov-Galerkin finite elements; the unidimensional problem. Num. Meth. PDE (to appear). | MR | Zbl
,[26] Finite Volume Methods, in Handbook of Numerical Analysis, Ciarlet-Lions Eds. 5 (1997). | Zbl
, and ,[27] The reformulation and numerical solution of certain nonclassical initial-boundary value problems. SIAM J. Sci. Stat. Comput. 12 (1991) 127-144. | MR | Zbl
and ,[28] A class of implicit upwind schemes for Euler equations on unstructured grids. J. Comp. Phys. 84 (1989) 174-206. | MR | Zbl
and ,[29] Finite Element Approximation of the Navier-Stokes equations. Lect. Notes Math. 749, Springer, Berlin (1979). | MR | Zbl
and ,[30] On first and second order box schemes. Computing 41 (1989) 277-296. | MR | Zbl
,[31] A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard Ed., Academic Press, New-York (1971) 327-350. | MR | Zbl
,[32] Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications, Hermes, Paris (1999). | MR | Zbl
, and ,[33] An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. | MR | Zbl
,[34] Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal. 21 (1984) 883-893. | MR | Zbl
and ,[35] Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. | MR | Zbl
,[36] A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math. 606, Springer-Verlag, Berlin (1977) 292-315. | MR | Zbl
and ,[37] Convergence of finite volume schemes for Poisson's equation on non-uniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. | MR | Zbl
,[38] The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. of Comp. 59 (1992) 59-382. | MR | Zbl
,[39] Box Schemes on quadrilateral meshes. Computing 51 (1993) 271-292. | MR | Zbl
,[40] Mixed Finite Volume methods. Int. J. Num. Meth. Eng. 45 (1999) to appear. | MR | Zbl
and ,[41] Application of compact difference schemes to the conservative Euler equations for one-dimensional flows. NASA Tech. Mem. 83262 (1982).
,[42] Implicit conservative schemes for the Euler equations. AIAA J. 24 (1986) 215-233. | MR | Zbl
and ,[43] A new formulation of the Mixed Finite Element Method for solving elliptic and parabolic PDE. J. Comp. Phys. 149 (1999) 148-167. | MR | Zbl
, , and ,