Holonomic 𝒟-modules with Betti structure
Mémoires de la Société Mathématique de France, no. 138-139 (2014), 213 p.
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We define the notion of Betti structure for holonomic 𝒟-modules which are not necessarily regular singular. We establish the fundamental functorial properties. We also give auxiliary analysis of holomorphic functions of various types on the real blow up.

Nous définissons la notion de structure Betti pour les 𝒟-modules holonomes qui ne sont pas nécessairement singuliers réguliers. Nous établissons leurs propriétés fonctorielles principales. Nous donnons également une analyse supplémentaire des fonctions holomorphes de divers types sur l’éclatement réel.

DOI : https://doi.org/10.24033/msmf.448
Classification:  14F10,  32C38
Keywords: holonomic D-modules, Betti structure, Stokes structure
@book{MSMF_2014_2_138-139__1_0,
     author = {Mochizuki, Takuro},
     title = {Holonomic $\mathcal{D}$-modules with Betti structure},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {138-139},
     year = {2014},
     doi = {10.24033/msmf.448},
     zbl = {1327.14006},
     mrnumber = {3306892},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2014_2_138-139__1_0}
}
Mochizuki, Takuro. Holonomic $\mathcal{D}$-modules with Betti structure. Mémoires de la Société Mathématique de France, Serie 2, , no. 138-139 (2014), 213 p. doi : 10.24033/msmf.448. http://www.numdam.org/item/MSMF_2014_2_138-139__1_0/

[1] Y. André, Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), no. 1, 147–198. | MR 2336081

[2] C. Banica, Le complété formel d’un espace analytique le long d’un sous-espace: un théorème de comparaison, Manuscripta Math. 6 (1972), 207–244. | MR 301231 | Zbl 0231.32004

[3] A. Beilinson, On the derived category of perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math. 1289, Springer, Berlin, (1987), 27–41. | MR 923133

[4] A. Beilinson, How to glue perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math. 1289, Springer, Berlin, (1987), 42–51. | MR 923134 | Zbl 0651.14009

[5] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100 (1982), 5–171. | MR 751966

[6] A. Beilinson, S. Bloch, P. Deligne, H. Esnault, Periods for irregular connections on curves, preprint.

[7] J. Bingener, Über Formale Komplexe Räume, Manuscripta Math. 24 (1978), 253–293. | MR 492367 | Zbl 0381.32015

[8] S. Bloch, H. Esnault, Homology for irregular connections, J. théorie des nombres, Bordeaux 16 (2004), 357–371. | Numdam | MR 2143558 | Zbl 1075.14016

[9] A. Borel, P. O. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, Algebraic 𝒟-modules, Perspectives in Mathematics 2, Academic Press, Inc., Boston, MA, 1987. | MR 882000

[10] A. D’Agnolo, M. Kashiwara, On a reconstruction theorem for holonomic systems, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 178–183. | MR 3004235 | Zbl 1266.32012

[11] A. D’Agnolo, M. Kashiwara, Riemann-Hilbert correspondence for holonomic D-modules; arXiv:1311.2374. | MR 3502097

[12] P. Deligne, Équations différentielles à points singuliers réguliers, Lectures Notes in Maths., vol. 163, Springer, 1970. | MR 417174 | Zbl 0244.14004

[13] P. Deligne, B. Malgrange, J-P. Ramis, Singularités irrégulières, Documents mathématiques 5, Société Mathématique de France, 2007. | MR 2387754

[14] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99. | Numdam | MR 432647 | Zbl 0326.14004

[15] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, (1977). | MR 463157 | Zbl 0367.14001

[16] M. Hien, Periods for flat algebraic connections, Invent. Math. 178 (2009), 1–22. | MR 2534091 | Zbl 1190.14019

[17] R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics 236, Birkhäuser Boston, Inc., Boston, MA, 2008. | MR 2357361 | Zbl 1136.14009

[18] B. Iversen, Cohomology of sheaves, Springer-Verlag, Berlin, 1986. | MR 842190 | Zbl 1272.55001

[19] M. Kashiwara, On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 10 (1974/75), 563–579. | MR 370665 | Zbl 0313.58019

[20] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319–365. | MR 743382 | Zbl 0566.32023

[21] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math. 1016, Springer, Berlin, (1983), 134–142. | MR 726425 | Zbl 0566.32022

[22] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, 217, Iwanami Series in Modern Mathematics, American Mathematical Society, 2003. | MR 1943036

[23] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, Berlin, 1990. | MR 1074006

[24] M. Kashiwara, P. Schapira, Ind-sheaves, Astérisque 271 (2001). | MR 1827714 | Zbl 0993.32009

[25] L. Katzarkov, M. Kontsevich and T. Pantev, Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, RI, (2008), 87–174; math:0806.0107. | Zbl 1206.14009

[26] K. Kedlaya, Good formal structures for flat meromorphic connections, I: Surfaces, Duke Math. J. 154 (2010), 343–418; arXiv:0811.0190. | MR 2682186 | Zbl 1204.14010

[27] K. Kedlaya. Good formal structures for flat meromorphic connections, II: Excellent schemes, J. Amer. Math. Soc. 24 (2011), 183–229; arXiv:1001.0544. | MR 2726603 | Zbl 1282.14037

[28] M. Kontsevich, Holonomic D-modules and positive characteristic, Japan J. Math. 4 (2009), 1–25. | MR 2491280 | Zbl 1215.14014

[29] B. A. Krasnov, Formal Modifications. Existence Theorems for modifications of complex manifolds, Math. USSR. Izvestija 7 (1973), 847–881. | MR 330504 | Zbl 0291.32018

[30] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210. | Numdam | MR 908218 | Zbl 0641.14009

[31] A. Levelt, Jordan decomosition for a class of singular differential operators, Ark. Math. 13 (1975), 1–27. | MR 500294 | Zbl 0305.34008

[32] R. Macpherson, K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), 403–435. | MR 833195 | Zbl 0597.18005

[33] H. Majima, Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics 1075, Springer-Verlag, Berlin, 1984. | MR 757897 | Zbl 0546.58003

[34] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics 3, Tata Institute of Fundamental Research, Bombay, Oxford University Press, London, 1967. | MR 212575

[35] B. Malgrange, La classification des connexions irrégulières à une variable, in Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, (1983), 381–399. | MR 728430

[36] B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101–102 (1983), 243–267. | MR 737934 | Zbl 0528.32007

[37] B. Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Mathematics 96, Birkhäuser, Boston, 1991. | MR 1117227

[38] B. Malgrange, Connexions méromorphies 2, Le réseau canonique, Invent. Math. 124 (1996), 367–387. | MR 1369422

[39] B. Malgrange, On irregular holonomic D-modules, Éléments de la théorie des systèmes différentiels géométriques, 391–410, Sémin. Congr. 8, Soc. Math. France, Paris, 2004. | MR 2087577 | Zbl 1077.32017

[40] Z. Mebkhout, Une équivalence de catégories. Compositio Math. 51 (1984), 51–62. | Numdam | MR 734784 | Zbl 0566.32021

[41] Z. Mebkhout, Une autre équivalence de catégories, Compositio Math. 51 (1984), 63–88. | Numdam | MR 734785 | Zbl 0566.32021

[42] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les 𝒟 X -modules cohérents, Hermann, Paris, 1989. | MR 1008245 | Zbl 0686.14020

[43] Z. Mebkhout, Le théorème de positivité de l’irrégularité pour les 𝒟 X -modules, in The Grothendieck Festschrift, Vol. III, 83–132, Progr. Math. 88, Birkhäuser Boston, Boston, MA, 1990. | MR 1106912

[44] T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces, in Algebraic Analysis and Around, Advanced Studies in Pure Mathematics 54 (2009), 223–253; math:0803.1346. | MR 2499558 | Zbl 1183.14027

[45] T. Mochizuki, On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles, Ann. Inst. Fourier (Grenoble) 59 (2009), 2819–2837. | Numdam | MR 2649340 | Zbl 1202.32008

[46] T. Mochizuki, Note on the Stokes structure of Fourier transform, Acta Math. Vietnam 35 (2010), 107–158 | MR 2642166 | Zbl 1201.32016

[47] T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque 340 (2011); math:0803.1344. | MR 2919903 | Zbl 1245.32001

[48] T. Mochizuki, Asymptotic behaviour of variation of pure polarized TERP structures, Publ. Res. Inst. Math. Sci. 47 (2011), 419–534; math:0811.1384. | MR 2849639 | Zbl 1231.32013

[49] T. Mochizuki, The Stokes structure of good meromorphic flat bundle, J. Inst. Math. Jussieu 10 (2011), 675–712. | MR 2806465 | Zbl 1227.32011

[50] T. Mochizuki, Mixed twistor D-modules; arXiv:1104.3366. | MR 3381953

[51] G. Morando, An existence theorem for tempered solutions of D-modules on complex curves, Publ. Res. Inst. Math. Sci. 43 (2007), 625–659. | MR 2361790 | Zbl 1155.32018

[52] C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque 263, Société Mathématique de France, Paris, 2000. | MR 1741802

[53] C. Sabbah, Polarizable twistor D-modules, Astérisque 300, Société Mathématique de France, Paris, (2005). | MR 2156523 | Zbl 1085.32014

[54] C. Sabbah, Introduction to Stokes structures, Lecture Notes in Mathematics 2060 Springer, Heidelberg, 2013; arXiv:0912.2762. | MR 2978128 | Zbl 1260.34002

[55] M. Saito, Modules de Hodge polarisables, Publ. RIMS 24 (1988), 849–995. | MR 1000123 | Zbl 0691.14007

[56] M. Saito, Duality for vanishing cycle functors, Publ. Res. Inst. Math. Sci. 25 (1989), 889–921. | MR 1045997 | Zbl 0712.32011

[57] M. Saito, Mixed Hodge modules, Publ. RIMS 26 (1990), 221–333. | MR 1047415 | Zbl 0727.14004

[58] M. Saito, Induced D-modules and differential complexes, Bull. Soc. Math. France 117 (1989), 361–387. | Numdam | MR 1020112 | Zbl 0705.32005

[59] J.-L. Verdier, Extension of a perverse sheaf over a closed subspace, in Differential systems and singularities (Luminy, 1983), Astérisque 130 (1985), 210–217. | MR 804054