[
Nous définissons la notion de structure Betti pour les
We define the notion of Betti structure for holonomic
Keywords: holonomic D-modules, Betti structure, Stokes structure
Mot clés : D-modules holonomiques, structure de Betti, structure de Stokes
@book{MSMF_2014_2_138-139__1_0, author = {Mochizuki, Takuro}, title = {Holonomic $\mathcal{D}$-modules with {Betti} structure}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, publisher = {Soci\'et\'e math\'ematique de France}, number = {138-139}, year = {2014}, doi = {10.24033/msmf.448}, mrnumber = {3306892}, zbl = {1327.14006}, language = {en}, url = {https://www.numdam.org/item/MSMF_2014_2_138-139__1_0/} }
TY - BOOK AU - Mochizuki, Takuro TI - Holonomic $\mathcal{D}$-modules with Betti structure T3 - Mémoires de la Société Mathématique de France PY - 2014 IS - 138-139 PB - Société mathématique de France UR - https://www.numdam.org/item/MSMF_2014_2_138-139__1_0/ DO - 10.24033/msmf.448 LA - en ID - MSMF_2014_2_138-139__1_0 ER -
Mochizuki, Takuro. Holonomic $\mathcal{D}$-modules with Betti structure. Mémoires de la Société Mathématique de France, Série 2, no. 138-139 (2014), 213 p. doi : 10.24033/msmf.448. http://numdam.org/item/MSMF_2014_2_138-139__1_0/
[1] Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), no. 1, 147–198. | MR
,[2] Le complété formel d’un espace analytique le long d’un sous-espace: un théorème de comparaison, Manuscripta Math. 6 (1972), 207–244. | MR | EuDML | Zbl
,
[3] On the derived category of perverse sheaves, in
[4] How to glue perverse sheaves, in
[5] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100 (1982), 5–171. | MR
, , ,[6] Periods for irregular connections on curves, preprint.
, , , ,[7] Über Formale Komplexe Räume, Manuscripta Math. 24 (1978), 253–293. | MR | EuDML | Zbl
,[8] Homology for irregular connections, J. théorie des nombres, Bordeaux 16 (2004), 357–371. | MR | EuDML | Zbl | Numdam
, ,
[9] Algebraic
[10] On a reconstruction theorem for holonomic systems, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 178–183. | MR | Zbl
, ,
[11] Riemann-Hilbert correspondence for holonomic
[12] Équations différentielles à points singuliers réguliers, Lectures Notes in Maths., vol. 163, Springer, 1970. | MR | Zbl
,[13] Singularités irrégulières, Documents mathématiques 5, Société Mathématique de France, 2007. | MR
, , ,[14] On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99. | MR | EuDML | Zbl | Numdam
,[15] Algebraic geometry, Springer-Verlag, New York-Heidelberg, (1977). | MR | Zbl
,[16] Periods for flat algebraic connections, Invent. Math. 178 (2009), 1–22. | MR | Zbl
,
[17]
[18] Cohomology of sheaves, Springer-Verlag, Berlin, 1986. | MR | Zbl
,[19] On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 10 (1974/75), 563–579. | MR | Zbl
,[20] The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319–365. | MR | Zbl
,[21] Vanishing cycle sheaves and holonomic systems of differential equations, in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math. 1016, Springer, Berlin, (1983), 134–142. | MR | Zbl
,
[22]
[23] Sheaves on manifolds, Springer-Verlag, Berlin, 1990. | MR
and ,[24] Ind-sheaves, Astérisque 271 (2001). | MR | Zbl | Numdam
, ,[25] Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, RI, (2008), 87–174; math:0806.0107. | Zbl
, and ,[26] Good formal structures for flat meromorphic connections, I: Surfaces, Duke Math. J. 154 (2010), 343–418; arXiv:0811.0190. | MR | Zbl
,[27] Good formal structures for flat meromorphic connections, II: Excellent schemes, J. Amer. Math. Soc. 24 (2011), 183–229; arXiv:1001.0544. | MR | Zbl
.
[28] Holonomic
[29] Formal Modifications. Existence Theorems for modifications of complex manifolds, Math. USSR. Izvestija 7 (1973), 847–881. | MR | Zbl
,[30] Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210. | MR | EuDML | Zbl | Numdam
,[31] Jordan decomosition for a class of singular differential operators, Ark. Math. 13 (1975), 1–27. | MR | Zbl
,[32] Elementary construction of perverse sheaves, Invent. Math. 84 (1986), 403–435. | MR | EuDML | Zbl
, ,[33] Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics 1075, Springer-Verlag, Berlin, 1984. | MR | Zbl
,[34] Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics 3, Tata Institute of Fundamental Research, Bombay, Oxford University Press, London, 1967. | MR
,[35] La classification des connexions irrégulières à une variable, in Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, (1983), 381–399. | MR
,[36] Polynômes de Bernstein-Sato et cohomologie évanescente, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101–102 (1983), 243–267. | MR | Zbl | Numdam
,[37] Équations différentielles à coefficients polynomiaux, Progress in Mathematics 96, Birkhäuser, Boston, 1991. | MR
,[38] Connexions méromorphies 2, Le réseau canonique, Invent. Math. 124 (1996), 367–387. | MR
,
[39] On irregular holonomic
[40] Une équivalence de catégories. Compositio Math. 51 (1984), 51–62. | MR | EuDML | Zbl | Numdam
,[41] Une autre équivalence de catégories, Compositio Math. 51 (1984), 63–88. | MR | EuDML | Zbl | Numdam
,
[42] Le formalisme des six opérations de Grothendieck pour les
[43] Le théorème de positivité de l’irrégularité pour les
[44] Good formal structure for meromorphic flat connections on smooth projective surfaces, in Algebraic Analysis and Around, Advanced Studies in Pure Mathematics 54 (2009), 223–253; math:0803.1346. | MR | Zbl
,[45] On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles, Ann. Inst. Fourier (Grenoble) 59 (2009), 2819–2837. | MR | EuDML | Zbl | Numdam
,[46] Note on the Stokes structure of Fourier transform, Acta Math. Vietnam 35 (2010), 107–158 | MR | Zbl
,
[47] Wild harmonic bundles and wild pure twistor
[48] Asymptotic behaviour of variation of pure polarized TERP structures, Publ. Res. Inst. Math. Sci. 47 (2011), 419–534; math:0811.1384. | MR | Zbl
,[49] The Stokes structure of good meromorphic flat bundle, J. Inst. Math. Jussieu 10 (2011), 675–712. | MR | Zbl
,
[50] Mixed twistor
[51] An existence theorem for tempered solutions of
[52] Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension
[53] Polarizable twistor
[54] Introduction to Stokes structures, Lecture Notes in Mathematics 2060 Springer, Heidelberg, 2013; arXiv:0912.2762. | MR | Zbl
,[55] Modules de Hodge polarisables, Publ. RIMS 24 (1988), 849–995. | MR | Zbl
,[56] Duality for vanishing cycle functors, Publ. Res. Inst. Math. Sci. 25 (1989), 889–921. | MR | Zbl
,[57] Mixed Hodge modules, Publ. RIMS 26 (1990), 221–333. | MR | Zbl
,
[58] Induced
[59] Extension of a perverse sheaf over a closed subspace, in Differential systems and singularities (Luminy, 1983), Astérisque 130 (1985), 210–217. | MR | Numdam
,Cité par Sources :