3 Classification des plongements isotropes d'après A. Weinstein
Publications du Département de mathématiques (Lyon), Séminaire de géométrie, no. 3B (1983), pp. 1-13.
@article{PDML_1983___3B_A3_0,
     author = {Sondaz, D.},
     title = {3 {Classification} des plongements isotropes d'apr\`es {A.} {Weinstein}},
     journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
     pages = {1--13},
     publisher = {Universit\'e Claude Bernard - Lyon 1},
     number = {3B},
     year = {1983},
     mrnumber = {725513},
     zbl = {0516.53043},
     language = {fr},
     url = {http://archive.numdam.org/item/PDML_1983___3B_A3_0/}
}
TY  - JOUR
AU  - Sondaz, D.
TI  - 3 Classification des plongements isotropes d'après A. Weinstein
JO  - Publications du Département de mathématiques (Lyon)
PY  - 1983
SP  - 1
EP  - 13
IS  - 3B
PB  - Université Claude Bernard - Lyon 1
UR  - http://archive.numdam.org/item/PDML_1983___3B_A3_0/
LA  - fr
ID  - PDML_1983___3B_A3_0
ER  - 
%0 Journal Article
%A Sondaz, D.
%T 3 Classification des plongements isotropes d'après A. Weinstein
%J Publications du Département de mathématiques (Lyon)
%D 1983
%P 1-13
%N 3B
%I Université Claude Bernard - Lyon 1
%U http://archive.numdam.org/item/PDML_1983___3B_A3_0/
%G fr
%F PDML_1983___3B_A3_0
Sondaz, D. 3 Classification des plongements isotropes d'après A. Weinstein. Publications du Département de mathématiques (Lyon), Séminaire de géométrie, no. 3B (1983), pp. 1-13. http://archive.numdam.org/item/PDML_1983___3B_A3_0/

[1] Alan Weinstein, Symplectic manifolds and their lagrangian submanifolds, Advances in mathematics 6, 329-346. (1971). | MR | Zbl

[2] Alan Weinstein, Lectures on symplectic manifolds. Regional Conference series in mathematics, Lecture 5, 22-24 (1976). | MR | Zbl

[3] Alan Weinstein, Neighborhood classification of isotropic embleddings, Journal of differential geometry 16, 125-128 (1981). | MR | Zbl

[4] P. Dazord, Théorie des feuilletages, Cours de D.E.A.

[5] S. Lang, Introduction aux variétés différentiables. | Zbl

[6] R. Narasimhan, Analysis on real and complex manifolds. | Zbl