Psychologism and the cognitive foundations of mathematics
Philosophia Scientiae, Aperçus philosophiques en logique et en mathématiques, Volume 9 (2005) no. 2, pp. 41-59.
@article{PHSC_2005__9_2_41_0,
     author = {Heintz, Christophe},
     title = {Psychologism and the cognitive foundations of mathematics},
     journal = {Philosophia Scientiae},
     pages = {41--59},
     publisher = {\'Editions Kim\'e},
     volume = {9},
     number = {2},
     year = {2005},
     language = {fr},
     url = {http://archive.numdam.org/item/PHSC_2005__9_2_41_0/}
}
TY  - JOUR
AU  - Heintz, Christophe
TI  - Psychologism and the cognitive foundations of mathematics
JO  - Philosophia Scientiae
PY  - 2005
SP  - 41
EP  - 59
VL  - 9
IS  - 2
PB  - Éditions Kimé
UR  - http://archive.numdam.org/item/PHSC_2005__9_2_41_0/
LA  - fr
ID  - PHSC_2005__9_2_41_0
ER  - 
%0 Journal Article
%A Heintz, Christophe
%T Psychologism and the cognitive foundations of mathematics
%J Philosophia Scientiae
%D 2005
%P 41-59
%V 9
%N 2
%I Éditions Kimé
%U http://archive.numdam.org/item/PHSC_2005__9_2_41_0/
%G fr
%F PHSC_2005__9_2_41_0
Heintz, Christophe. Psychologism and the cognitive foundations of mathematics. Philosophia Scientiae, Aperçus philosophiques en logique et en mathématiques, Volume 9 (2005) no. 2, pp. 41-59. http://archive.numdam.org/item/PHSC_2005__9_2_41_0/

[1] Bloor, D. 1991.- Knowledge and Social Imagery, 2nd ed., Chicago : University of Chicago Press.

[2] Bloor, D. 1994.- What Can the Sociologist of Knowledge Say About 2+2=4 ? in P. Ernest (ed.), Mathematics, Education and Philosphy, London : Falmer, Chapter 2.

[3] Bloor, D. 1997.- Wittgenstein on Rules and Institutions, London : Routledge.

[4] Dehaene, Stanislas 1996.- La Bosse des Maths, Paris : Odile Jacob.

[5] Engel, P. 1989.- La Norme du Vrai, Philosophie de la Logique, Paris : Gallimard.

[6] Gallistel, C. R., Gelman, R., & Cordes, S. 2002.- The cultural and evolutionary history of the real numbers, in S. Levinson & P. Jaisson (Eds.), Culture and evolution, Cambridge, MA : MIT Press.

[7] Gallistel, C. R., & Gelman, R. 2000.- Non-verbal numerical cognition : From reals to integers, Trends in Cognitive Sciences, 4, 59-65.

[8] Heintz, C. 2002.- Can mathematical concepts allow cultural analysis : An illustration, in J. Goggin & M. Burke (eds.), Travelling Concepts II : Frame, Meaning and Metaphor, Amsterdam : ASCA Press.

[9] Kusch, M. 1995.- Psychologism, London : Routledge.

[10] Johnson-Laird, P.N., & Byrne, R.M.J. 1991.- Deduction, Hillsdale, NJ : Lawrence Erlbaum Associates.

[11] Lakatos, I. 1976.- Proofs and Refutations, Cambridge : CUP. | MR | Zbl

[12] Lakatos, I. 1978.- Cauchy and the continuum : The significance of non-standard analysis for the history and philosophy of mathematics, Mathematics Intelligencer, 1(3), 151-161. | MR | Zbl

[13] Macnamara, J. 1986.- A Border Dispute, the Place of Logic in Psychology, Cambridge : MIT Press.

[14] Macnamara, J. & Reyes, G. E. (eds) 1994.- The Logical Foundations of Cognition, New-York : Oxford University Press. | MR

[15] Maddy, P. 1980.- Perception and mathematical intuition, Philosophical Review, 89, 163-196.

[16] Maddy, P. 1989.- The roots of contemporary Platonism, Journal of Symbolic Logic, 54, 1121-1144. | MR | Zbl

[17] Maddy, P. 1990.- Realism in Mathematics, Oxford : Oxford University Press. | MR | Zbl

[18] Maddy, P. 1996.- Set theoretic naturalism, Journal of Symbolic Logic, 61, 490-514. | MR | Zbl

[19] Putnam, H. 1968.- The Logic of quantum Mechanics, in Mathematics, Matters and Method, Cambridge : Cambridge University Press. L'intelligence dévoile enfin sa vraie nature : toute pensée est un calcul !, Science et Vie, numéro 1013, février 2002.

[20] Sperber, D. 1996.- Explaining culture : A naturalistic approach, Oxford : Blackwell.