Will M theory unify mathematics and physics ?
Publications Mathématiques de l'IHÉS, Volume S88  (1998), p. 67-72
@article{PMIHES_1998__S88__67_0,
     author = {Douglas, Michael R.},
     title = {Will $M$ theory unify mathematics and physics ?},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {S88},
     year = {1998},
     pages = {67-72},
     zbl = {0994.81114},
     mrnumber = {1667900},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1998__S88__67_0}
}
Douglas, Michael R. Will $M$ theory unify mathematics and physics ?. Publications Mathématiques de l'IHÉS, Volume S88 (1998) , pp. 67-72. http://www.numdam.org/item/PMIHES_1998__S88__67_0/

[1] T. Banks, W. Fischler, S. Shenker and L. Susskind, Phys. Rev. D55 (1997) 5112-5128; hep-th/9610043.

[2] M. Berger , Bull. Soc. Math. France 83 (1955) 279-330. | Numdam | MR 79806 | Zbl 0068.36002

[3] P. Candelas , G.T. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46-74. | MR 800347

[4] S. Coleman , Aspects of Symmetry, Cambridge 1985. | Zbl 0575.22023

[5] E. Cremmer , B. Julia, J. Scherk, Phys. Lett. 76B ( 1978) 409-412.

[6] The most recent data on Calabi-Yau manifolds is kept on-line by a number of physicists and mathematicians; notably R. Schimmrigk ( http://thew02.physik.uni-bonn.de/ netah/cy.html) and S. Katz (http://www.math.okstate.edu/ katz/CY).

[7] M.R. Douglas , Superstring Dualities, Dirichlet Branes and the Small-Scale Structure of Space, Talk given at Les Houches Summer School on Theoretical Physics, Session 64: Quantum Symmetries, Les Houches, France, 1 Aug - 8 Sep 1995 ; hep-th/9610041. | Zbl 0938.81036

[8] R.P. Feynman , The Character of Physical Law, Cambridge, 1965; Surely You're Joking, Mr. Feynman, W. W. Norton, 1985.

[9] M.B. Green , J.H. Schwarz and E. Witten, Superstring Theory , 2 vols, Cambridge 1987. | Zbl 0619.53002

[10] J. Maldacena , hep-th/9711200.

[11] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B483 (1997) 229-247; hep-th/9609070; | MR 1439440 | Zbl 0925.81228

M.R. Douglas, S. Katz and C. Vafa, Small instantons, del Pezzo surfaces and type I' theory, Nucl. Phys. B497 (1997) 155-172; hep-th/9609071. | MR 1467888 | Zbl 0935.81057

[12] See for example A. Pais, Subtle is the Lord, Oxford University Press, 1982. | MR 690419 | Zbl 0525.01017

[13] J. Polchinski , Rev. Mod. Phys. 68 (1996) 1245, hep-th/9607050.

[14] As quoted in M. Reed and B. Simon, Methods of Modern Mathematical Physics , vol IV, p. 1, Academic Press 1978.

[15] J.H. Schwarz , Lectures on Superstring and M Theory Dualities, Lectures given at the ICTP Spring School (March 1996) and the TASI Summer School (June 1996, Nucl. Phys. Proc. Suppl. 55B (1997) 1-32, hep-th/9607201. | MR 1463491 | Zbl 0957.81626

[16] A. Sen, An Introduction to Non-perturbative String Theory, Lectures given at Isaac Newton Institute and DAMTP; hep-th/9802051.

[17] A. Strominger , Nucl. Phys. Proc. Suppl. 46 (1996) 204-209; hep-th/9510207. | MR 1411474 | Zbl 0908.53040

[18] E. Witten , Nucl. Phys. B188 (1981) 513.

[19] E. Witten , Mod. Phys. Lett. A10 (1995) 2153-2156; hep-th/9506101. | Zbl 1022.81798

[20] C.N. Yang , Selected papers 1945-1980, Freeman 1983 .

[21] S.T. Yau , Comm. Pure Appl. Math. 31 (1978) 339-411. | MR 480350 | Zbl 0369.53059