This paper is concerned with the problem of simulation of , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain : namely, we consider the case where the boundary is killing, or where it is instantaneously reflecting in an oblique direction. Given discretization times equally spaced on the interval , we propose new discretization schemes: they are fully implementable and provide a weak error of order under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.
Mots clés : killed diffusion, reflected diffusion, discretization schemes, rates of convergence, weak approximation, boundary value problems for parabolic PDE
@article{PS_2001__5__261_0, author = {Gobet, Emmanuel}, title = {Euler schemes and half-space approximation for the simulation of diffusion in a domain}, journal = {ESAIM: Probability and Statistics}, pages = {261--297}, publisher = {EDP-Sciences}, volume = {5}, year = {2001}, mrnumber = {1889160}, zbl = {0998.60081}, language = {en}, url = {http://archive.numdam.org/item/PS_2001__5__261_0/} }
TY - JOUR AU - Gobet, Emmanuel TI - Euler schemes and half-space approximation for the simulation of diffusion in a domain JO - ESAIM: Probability and Statistics PY - 2001 SP - 261 EP - 297 VL - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/PS_2001__5__261_0/ LA - en ID - PS_2001__5__261_0 ER -
Gobet, Emmanuel. Euler schemes and half-space approximation for the simulation of diffusion in a domain. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 261-297. http://archive.numdam.org/item/PS_2001__5__261_0/
[1] Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab. 23 (1995) 1644-1670. | MR | Zbl
,[2] Pricing complex barrier options with general features using sharp large deviation estimates, edited by Niederreiter, Harald et al., Monte-Carlo and quasi-Monte-Carlo methods 1998, in Proc. of a conference held at the Claremont Graduate University. Claremont, CA, USA, June 22-26, 1998. Springer, Berlin (2000) 149-162. | MR | Zbl
, and ,[3] The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields 104-1 (1996) 43-60. | MR | Zbl
and ,[4] Computation of the invariant law of a reflected diffusion process (in preparation).
, and ,[5] Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 67-112. | Numdam | MR | Zbl
,[6] Régularité au bord pour les densités et les densités conditionnelles d'une diffusion réfléchie hypoelliptique. Stochastics 20 (1987) 309-340. | Zbl
,[7] Numerical approximation for functionnals of reflecting diffusion processes. SIAM J. Appl. Math. 58 (1998) 73-102. | MR | Zbl
, and ,[8] The inverse EEG and MEG problems: The adjoint state approach. I. The continuous case. Rapport de recherche INRIA No. 3673 (1999).
, , , , , , , , , , and ,[9] Functional integration and partial differential equations. Ann. of Math. Stud. Princeton University Press (1985). | MR | Zbl
,[10] Elliptic partial differential equations of second order. Springer Verlag (1977). | MR | Zbl
and ,[11] Schémas d'Euler pour diffusion tuée. Application aux options barrière, Ph.D. Thesis. Université Denis Diderot Paris 7 (1998).
,[12] Euler schemes for the weak approximation of killed diffusion. Stochastic Process. Appl. 87 (2000) 167-197. | MR | Zbl
,[13] Efficient schemes for the weak approximation of reflected diffusions. Monte Carlo Methods Appl. 7 (2001) 193-202. Monte Carlo and probabilistic methods for partial differential equations. Monte Carlo (2000). | MR | Zbl
,[14] A numerical scheme using excursion theory for simulating stochastic differential equations with reflection and local time at a boundary. Monte Carlo Methods Appl. 6 (2000) 81-103. | MR | Zbl
,[15] Strong approximation of reflecting Brownian motion using penalty method and its application to computer simulation. Monte Carlo Methods Appl. 6 (2000) 105-114. | MR | Zbl
and ,[16] Applications of the Malliavin calculus I, edited by K. Itô, Stochastic Analysis, in Proc. Taniguchi Internatl. Symp. Katata and Kyoto 1982. Kinokuniya, Tokyo (1984) 271-306. | MR | Zbl
and ,[17] Linear and quasi-linear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). | Zbl
, and ,[18] Un schéma d'Euler pour équations différentielles stochastiques réfléchies. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 601-605. | Zbl
,[19] Euler scheme for reflected stochastic differential equations. Math. Comput. Simulation 38 (1995) 119-126. | MR | Zbl
,[20] Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | MR | Zbl
and ,[21] Numerical approaches to reflected diffusion processes. Technical Report (1993).
,[22] Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733-744. | MR | Zbl
,[23] Application of the numerical integration of stochastic equations for the solution of boundary value problems with Neumann boundary conditions. Theory Probab. Appl. 41 (1996) 170-177. | MR | Zbl
,[24] Partial differential equations of elliptic type. Springer, New York (1970). | MR | Zbl
,[25] Symmetric reflected diffusions. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 13-62. | Numdam | MR | Zbl
and ,[26] Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process. Appl. 59 (1995) 295-308. | MR | Zbl
,[27] Penalization schemes for reflecting stochastic differential equations. Bernoulli 3 (1997) 403-414. | MR | Zbl
,[28] Continuous martingales and Brownian motion, 2nd Ed. Springer, Berlin, Grundlehren Math. Wiss. 293 (1994). | MR | Zbl
and ,[29] Stochastic differential equations for multi-dimensional domain with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. | MR | Zbl
,[30] The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496. | MR | Zbl
,[31] On approximation of solutions of multidimensional SDEs with reflecting boundary conditions. Stochastic Process. Appl. 50 (1994) 197-219. | MR | Zbl
,[32] Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8-4 (1990) 94-120. | MR | Zbl
and ,[33] Semimartingale reflecting Brownian motions in the orthant, Stochastic networks. Springer, New York (1995) 125-137. | MR | Zbl
,