The trust region affine interior point algorithm for convex and nonconvex quadratic programming
RAIRO - Operations Research - Recherche Opérationnelle, Volume 29 (1995) no. 2, p. 195-217
@article{RO_1995__29_2_195_0,
     author = {Bonnans, J. F. and Bouhtou, M.},
     title = {The trust region affine interior point algorithm for convex and nonconvex quadratic programming},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     publisher = {EDP-Sciences},
     volume = {29},
     number = {2},
     year = {1995},
     pages = {195-217},
     zbl = {0835.90061},
     mrnumber = {1337889},
     language = {en},
     url = {http://www.numdam.org/item/RO_1995__29_2_195_0}
}
Bonnans, J. F.; Bouhtou, M. The trust region affine interior point algorithm for convex and nonconvex quadratic programming. RAIRO - Operations Research - Recherche Opérationnelle, Volume 29 (1995) no. 2, pp. 195-217. http://www.numdam.org/item/RO_1995__29_2_195_0/

1. I. Adler, M. G. C. Resende, G. Veiga, An implementation of Karmarkar's algorithm for linear programming, Math. Programming, 1989, 44, pp. 297-335. | MR 1028226 | Zbl 0682.90061

2. I. Adler, R. D. C. Monteiro, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Programming, 1991, 50, pp. 29-51. | MR 1098845 | Zbl 0719.90044

3. E. R. Barnes, A variation on Karmarkar's algorithm for solving linear programming, Math Programming, 1986, 36, pp. 174-182. | MR 866987 | Zbl 0626.90052

4. F. Delebecque, C. Klimann, S. Steer, Basile. Un système de CAO pour l'automatique, Version 3.0. Guide d'utilisation, INRIA, Mars 1989.

5. D. A. Bayer, J. C. Lagarias, The nonlinear geometry of linear programming: I Affine and projective trajectories, Trans, Amer. Math. Soc., 1989, (2), 314, pp. 499-526. | MR 1005525 | Zbl 0671.90045

6. M. Bouthou, Méthodes de points intérieurs pour l'optimisation des systèmes de grande taille, Thèse de Doctorat, Université Paris Dauphine, 1993.

7. J.-P. Bulteau, J.-P. Vial, A restricted trust region algorithms for unconstrained optimization, Optim. Theory and Appl., 1985, 47, n° 4, pp. 413-435. | MR 818870 | Zbl 0556.90075

8. E. Casas, C. Pola, Dealing with degenerated cases in quadratic programs, RAIRO-Operations Research, 1994, 27, n° 4, pp. 401 à 426. | Numdam | MR 1250365 | Zbl 0795.90048

9. I. I. Dikin, Iterative solutions of problems of linear and quadratic programming, Soviet. Math. Doklady, 1967, 8, pp. 674-675. | Zbl 0189.19504

10. C. C. Gonzaga, L. A. Carlos, A primal affine scaling algorithm for linearly constrained convex programs, Report, Federal University of Rio de Janeiro.

11. C. C. Gonzaga, Convergence of the large step primal affine scaling algorithm for primal non-degenerate linear programs, Tech. Report, Federal University of Rio de Janeiro, Brazil.

12. M. D. Hebden, An algorithm for minimization using exact second derivatives. Atomic Energy Research, Establishment report TP 515, Harwell, England 1973.

13. N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorica, 1984, 4, pp. 373-395. | MR 779900 | Zbl 0557.90065

14. M. Kojima, S. Mizuno, A. Yoshise, AN O (√nL) iteration potential reduction algorithm for linear complementarity problems, Math. Programming, 1991, 50, pp. 331-342. | MR 1114235 | Zbl 0738.90077

15. O. L. Mangasarian, A simple characterization of solution sets of convex programs, Oper. Res. Lett., 1988, 7, pp. 21-26. | MR 936347 | Zbl 0653.90055

16. N. Megiddo, M. Shub, Boundary behavior of interior point algorithms for linear programming, Math. Oper, Res., 1989, 14, pp. 97-146. | MR 984561 | Zbl 0675.90050

17. R. D. C. Monteiro, I. Adler, M. G. C. Resende, A polynomial time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extensions, Math. Oper. Res., 1990, 15 (2). | MR 1051568 | Zbl 0714.90060

18. J. J. Moré, Recent developments in algorithms and software for trust region method, Born 1982, Springer Verlag. | MR 717404 | Zbl 0546.90077

19. R. Saigal, A three step quadratically convergent implementation of the primal affine scalling method, Technical Report 93-9, Department of Industrial and Operational Engineering, University of Michigan, Ann-Arbor, MI-48109-2117, USA.

20. J. Sun, A convergence proof of an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Technical Report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA, 1990. | Zbl 0781.90073

21. P. Tseng, Z. Q. Luo, On the convergence of the affine scaling algorithm, Technical Report, CICS-P-169, Center for Intelligent Control Systems, Massachusetts Institute of Technology (Cambridge, MA, 1989). | Zbl 0762.90052

22. T. Tsuchiya, Global convergence of the affine scaling methods for degenerate linear programming problem, Math. Programming, 1991, 52, pp. 377-404. | MR 1148177 | Zbl 0749.90051

23. T. Tsuchiya, Global convergence of the affine scaling algorithm for the primal degenerate strictly convex quadratic programming problems, The Institute of Statistical Mathematics, Tokyo, Japan, Technical report n° 417. | Zbl 0793.90055

24. T. Tsuchiya, M. Muratmatsu, Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems, Research Memorandum 423, the Institute of Statistical Mathematics, 4-6-7 Minami-Azabou, Minoto-Ku, Tokyo 106, Japan, 1992. | Zbl 0838.90081

25. T. Tsuchiya, R. D. C. Monteiro, Superlinear convergence of the affine scaling algorithm, Department of Systems and Industrial Engineering, University of Arizona, Tucson, Technical Report. | Zbl 0870.90083

26. R. J. Vanderbei, S. M. Meketon, B. A. Freedman, A modification of Karmarkar's linear programming algorithm, Algorithmica, 1986, 1, pp. 395-407. | MR 880730 | Zbl 0626.90056

27. Y. Ye, E. Tse, An extension of Karmarkar's projective algorithm for convex quadratic programming, Math. Programming, 1989, 44, pp. 157-179. | MR 1003558 | Zbl 0674.90077

28. Y. Ye, On affine scaling algorithms for nonconvex quadratic programming, Math. Prog., 1992, 56, 3, pp. 285-301. | MR 1187254 | Zbl 0767.90065