@article{RSMUP_1994__91__23_0, author = {Hill, C. Denson and Nacinovich, Mauro}, title = {A collar neighborhood theorem for a complex manifold}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {23--30}, publisher = {Seminario Matematico of the University of Padua}, volume = {91}, year = {1994}, mrnumber = {1289628}, zbl = {0815.53047}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1994__91__23_0/} }
TY - JOUR AU - Hill, C. Denson AU - Nacinovich, Mauro TI - A collar neighborhood theorem for a complex manifold JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1994 SP - 23 EP - 30 VL - 91 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1994__91__23_0/ LA - en ID - RSMUP_1994__91__23_0 ER -
%0 Journal Article %A Hill, C. Denson %A Nacinovich, Mauro %T A collar neighborhood theorem for a complex manifold %J Rendiconti del Seminario Matematico della Università di Padova %D 1994 %P 23-30 %V 91 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1994__91__23_0/ %G en %F RSMUP_1994__91__23_0
Hill, C. Denson; Nacinovich, Mauro. A collar neighborhood theorem for a complex manifold. Rendiconti del Seminario Matematico della Università di Padova, Tome 91 (1994), pp. 23-30. http://archive.numdam.org/item/RSMUP_1994__91__23_0/
[1] H. GRAUERT, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259. | Numdam | MR | Zbl
-[2] Mappings of partially analytic spaces, Ann. Math., 83 (1961), pp. 209-242. | MR | Zbl
,[3] A Newlander-Nirenberg theorem for manifolds with boundary, Mich. Math. J., 35 (1988), pp. 233-240. | MR | Zbl
,[4] Embeddability of smooth Cauchy-Riemann manifolds, Ann. di Mat., 139 (1985), pp. 15-43. | MR | Zbl
,[5] H. JACOBOWITZ, A remark on almost complex structures with boundary, Amer. J. Math., 111 (1989), pp. 53-64. | MR | Zbl
-[6] Extension of the complex structure from Stein manifolds with strictly pseudoconvex boundary, Preprint, Akad. Wiss. DDR Berlin (1984). | MR | Zbl
,[7] What is the notion of a complex manifold with a smooth boundary?, in Prospect in Algebraic Analysis, Vol. 1 (KASHIWARA and KAWAI, eds.) Academic Press, New York (1988), pp. 185-201. | MR | Zbl
,[8] A family of exotic structures on S2 x S2, in Analyse Complexe Multivariable: Recents Developpements (A. MÉRIL, ed.), Guadalupe (1988), Edit E1, Commenda di Rende (1991), pp. 105-110. | MR | Zbl
,[9] Counterexamples to Newlander-Nirenberg up to the boundary, Proc. Symp. Pure Math., 52 (3) (1991), pp. 191-197. | MR | Zbl
,[10] Embeddable CR manifolds with nonembeddable smooth boundaries, to appear in B.U.M.I. | Zbl
- ,[11] Imbedding of holomorphically complete complex spaces, Amer. J. Math., 82 (1960), pp. 917-934. | MR | Zbl
,[12] L. NIRENBERG, Complex coordinates in almost complex manifolds, Ann. Math., 65 (1957), pp. 391-404. | MR | Zbl
-