@article{RSMUP_1995__94__121_0, author = {Hegarty, Peter V.}, title = {Minimal abelian automorphism groups of finite groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {121--135}, publisher = {Seminario Matematico of the University of Padua}, volume = {94}, year = {1995}, mrnumber = {1370908}, zbl = {0846.20024}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1995__94__121_0/} }
TY - JOUR AU - Hegarty, Peter V. TI - Minimal abelian automorphism groups of finite groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 121 EP - 135 VL - 94 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1995__94__121_0/ LA - en ID - RSMUP_1995__94__121_0 ER -
%0 Journal Article %A Hegarty, Peter V. %T Minimal abelian automorphism groups of finite groups %J Rendiconti del Seminario Matematico della Università di Padova %D 1995 %P 121-135 %V 94 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1995__94__121_0/ %G en %F RSMUP_1995__94__121_0
Hegarty, Peter V. Minimal abelian automorphism groups of finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 94 (1995), pp. 121-135. http://archive.numdam.org/item/RSMUP_1995__94__121_0/
[1] Automorphisms of a p-group, Illinois J. Math., 9 (1965), pp. 137-143. | MR | Zbl
- ,[2] Problems in Group Theory, Blaisdell, New York (1976). | Zbl
,[3] On finite groups whose group of automorphisms is Abelian, Ph. D. thesis, Wayne State University, 1975, Dissertation Abstracts, V. 36, p. 2269 B.
,[4] A note on the automorphism group of a p-group, Proc. Amer. Math. Soc., 19 (1968), pp. 1379-1382. | MR | Zbl
,[5] D. MACHALE - E. A. O'BRIEN - R. SHEEHY, Finite groups whose automorphism groups are 2-groups, Proc. R. Ir. Acad., 94A, No. 2 (1994), pp. 137-145. | MR | Zbl
-[6] A note on the outer automorphisms of finite nilpotent groups, Amer. Math. Monthly (1966), pp. 174-175. | MR | Zbl
,[7] Finite groups with odd order automorphism groups, Proc. R. Ir. Acad., to appear. | MR | Zbl
- ,[8] A non-Abelian group whose group of automorphisms is Abelian, Messenger Math., 43 (1913), pp. 124-125. | JFM
,[9] On p-groups with Abelian automorphism group, Rend. Sem. Mat. Univ. Padova, 92 (1994). | Numdam | MR | Zbl
,[10] The central automorphisms of a finite group, J. London Math. Soc., 44 (1969), pp. 225-228. | MR | Zbl
,