Abelian groups that cannot be factored without periodic factor
Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006), pp. 261-269.
@article{RSMUP_2006__116__261_0,
     author = {Szab\'o, S\'andor},
     title = {Abelian groups that cannot be factored without periodic factor},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {261--269},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {116},
     year = {2006},
     zbl = {1156.20315},
     mrnumber = {2287350},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2006__116__261_0/}
}
TY  - JOUR
AU  - Szabó, Sándor
TI  - Abelian groups that cannot be factored without periodic factor
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2006
DA  - 2006///
SP  - 261
EP  - 269
VL  - 116
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2006__116__261_0/
UR  - https://zbmath.org/?q=an%3A1156.20315
UR  - https://www.ams.org/mathscinet-getitem?mr=2287350
LA  - en
ID  - RSMUP_2006__116__261_0
ER  - 
Szabó, Sándor. Abelian groups that cannot be factored without periodic factor. Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006), pp. 261-269. http://archive.numdam.org/item/RSMUP_2006__116__261_0/

[1] K. Amin - K. Corrádi - A. D. Sands, The Hajós property for 2-groups, Acta Math. Hungar. 89 (2000), pp. 189-198. | MR 1912599 | Zbl 1004.20032

[2] K. Corrádi - S. Szabó, Factorization of periodic subsets II, Math. Japonica. 36 (1991), pp. 165-172. | MR 1093368 | Zbl 0726.20036

[3] C. De Felice, An application of Hajós factorization to variable length codes, Theoret. Comp. Sci. 164 (1996), pp. 223-252. | MR 1411206 | Zbl 0864.94014

[4] G. Hajós, Sur la factorisation des groupes abèliens, CÏasopis Pés. Mat. Fys. 74 (1949), pp. 157-162. | MR 45727 | Zbl 0039.01901

[5] R. Hill - R. W. Irving, On group partitions associated with lower bounds for symmetric Ramsey numbers, European Journal of Combinatorics 3 (1982), pp. 35-50. | MR 656010 | Zbl 0485.05045

[6] J. C. Lagarias - Y. Wang, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), pp. 73-98. | MR 1442160 | Zbl 0898.47002

[7] L. Rédei, Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hungar. 16 (1965), pp. 329-373. | MR 186729 | Zbl 0138.26001

[8] A. D. Sands, On the factorisation of finite abelian groups II, Acta Math. Acad. Sci. Hungar. 13 (1962), pp. 153-169. | MR 142620 | Zbl 0101.26502

[9] A. D. Sands, Factoring finite abelian groups, Journal of Alg. 275 (2004), pp. 540-549. | MR 2052624 | Zbl 1081.20063

[10] A. D. Sands - S. Szabó, Factorization of periodic subsets, Acta Math. Acad. Sci. Hungar. 57 (1991), pp. 159-167. | MR 1128852 | Zbl 0754.20014

[11] S. K. Stein, Algebraic tiling, Amer. Math. Monthly, 81 (1974), pp. 445-462. | MR 340063 | Zbl 0284.20048

[12] S. Szabó, Factoring a certain type of 2-groups by subsets, Rivista di Matematica, 6 (1997), pp. 25-29. | MR 1632691 | Zbl 0931.20040

[13] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Number Theory (Paris 1992-1993) London Math. Soc. Lecture Note Ser. 215 Cambridge Univ. Press, Cambridge 1995, pp. 261-276. | MR 1345184 | Zbl 0824.11006