Star stability and star regularity for Mori domains
Rendiconti del Seminario Matematico della Università di Padova, Volume 126 (2011), pp. 107-125.
@article{RSMUP_2011__126__107_0,
     author = {Gabelli, Stefania and Picozza, Giampaolo},
     title = {Star stability and star regularity for {Mori} domains},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {107--125},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {126},
     year = {2011},
     zbl = {1279.13008},
     mrnumber = {2918202},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2011__126__107_0/}
}
TY  - JOUR
AU  - Gabelli, Stefania
AU  - Picozza, Giampaolo
TI  - Star stability and star regularity for Mori domains
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2011
DA  - 2011///
SP  - 107
EP  - 125
VL  - 126
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2011__126__107_0/
UR  - https://zbmath.org/?q=an%3A1279.13008
UR  - https://www.ams.org/mathscinet-getitem?mr=2918202
LA  - en
ID  - RSMUP_2011__126__107_0
ER  - 
%0 Journal Article
%A Gabelli, Stefania
%A Picozza, Giampaolo
%T Star stability and star regularity for Mori domains
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2011
%P 107-125
%V 126
%I Seminario Matematico of the University of Padua
%G en
%F RSMUP_2011__126__107_0
Gabelli, Stefania; Picozza, Giampaolo. Star stability and star regularity for Mori domains. Rendiconti del Seminario Matematico della Università di Padova, Volume 126 (2011), pp. 107-125. http://archive.numdam.org/item/RSMUP_2011__126__107_0/

[1] V. Barucci, Mori domains, Non-Noetherian Commutative Ring Theory; Recent Advances, Chapter 3, Kluwer Academic Publishers, 2000. | MR | Zbl

[2] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra, 184 (1996), pp. 613-631. | MR | Zbl

[3] S. Bazzoni, Groups in the class semigroups of Prüfer domains of finite character, Comm. Algebra, 28 (2000), pp. 5157-5167. | MR | Zbl

[4] S. Bazzoni, Clifford regular domains, J. Algebra, 238 (2001), pp. 703-722. | MR | Zbl

[5] S. Bazzoni, Finite character of finitely stable domains, J. Pure Appl. Algebra, to appear. | MR | Zbl

[6] S. Bazzoni - L. Salce, Groups in the class semigroups of valuation domains, Israel J. Math., 95 (1996), pp. 135-155. | MR | Zbl

[7] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1964. | MR

[8] G. W. Chang - M. Zafrullah, The w -integral closure of integral domains, J. Algebra, 295 (2006), pp. 195-210. | MR | Zbl

[9] D. E. Dobbs - E. G. Houston - T. G. Lucas - M. Zafrullah, t -linked overrings and Prüfer v -multiplication domains, Comm. Algebra, 17 (1989), pp. 2835-2852. | MR | Zbl

[10] S. El Baghdadi - M. Fontana - G. Picozza, Semistar Dedekind domains, J. Pure Applied Algebra, 193 (2004), pp. 27-60. | MR | Zbl

[11] S. El Baghdadi - S. Gabelli, w -divisorial domains, J. Algebra, 285 (2005), pp. 335-355. | MR | Zbl

[12] J. Elliot, Functorial properties of star operations, Comm. Algebra, 38 (2010), pp. 1466-1490. | MR | Zbl

[13] M. Fontana - K. A. Loper, Kronecker function rings: a general approach, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), Lecture Notes in Pure and Appl. Math., vol. 220 (Dekker, New York, 2001), pp. 189-205. | MR | Zbl

[14] S. Gabelli - E. Houston, Ideal Theory in Pullbacks, Non-Noetherian Commutative Ring Theory; Recent Advances, Chapter 9, Kluwer Academic Publishers, 2000. | MR | Zbl

[15] S. Gabelli - G. Picozza, Star-stable domains, J. Pure Applied Algebra, 208 (2007), pp. 853-866. | MR | Zbl

[16] S. Gabelli - G. Picozza, Stability and regularity with respect to star operations, Comm. Algebra, to appear.

[17] R. Gilmer, Multiplicative ideal theory. Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York, 1972. | MR | Zbl

[18] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math., 21 (2009), pp. 1001-1020. | MR | Zbl

[19] J. R. Hedstrom - E. G. Houston, Pseudo-valuation domains. II. Pacific J. Math., 75, no. 1 (1978), pp. 137-147. | MR | Zbl

[20] S. Kabbaj - A. Mimouni, Class semigroups of integral domains, J. Algebra, 264 (2003), pp. 620-640. | MR | Zbl

[21] S. Kabbaj - A. Mimouni, t -Class semigroups of integral domains, J. reine angew. Math., 612 (2007), pp. 213-229. | MR | Zbl

[22] S. Kabbaj - A. Mimouni, Constituent groups of Clifford semigroups arising from t -closure, J. Algebra, 321 (2009), pp. 1443-1452. | MR | Zbl

[23] S. Kabbaj - A. Mimouni, t -Class semigroups of Noetherian domains, Commutative Algebra and its applications, de Gruyter (2009), pp. 283-290. | MR | Zbl

[24] B. G. Kang, Prüfer v -multiplication domains and the ring R[X] N v , J. Algebra, 123 (1989), pp. 151-170. | MR | Zbl

[25] A. Mimouni, Pullbacks and coherent-like properties, Advances in commutative ring theory (Fez, 1997), pp. 437-459, Lecture Notes in Pure and Appl. Math., 205 (Dekker, New York, 1999). | MR | Zbl

[26] B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra, 205, no. 2 (1998), pp. 480-504. | MR | Zbl

[27] B. Olberding, Stability, duality and 2 -generated ideals, and a canonical decomposition of modules, Rend. Sem. Mat. Univ. Padova, 106 (2001), pp. 261-290. | Numdam | MR | Zbl

[28] B. Olberding, On the classification of stable domains, J. Algebra, 243, no. 1 (2001), pp. 177-197. | MR | Zbl

[29] B. Olberding, On the structure of stable domains, Comm. Algebra, 30, no. 2 (2002), pp. 877-895. | MR | Zbl

[30] B. Olberding, An exceptional class of stable domains 2003.

[31] G. Picozza, Star operations on overrings and semistar operations, Comm. Algebra, 33 (2005), pp. 2051-2073. | MR | Zbl

[32] D. Rush, Two-generated ideals and representations of abelian groups over valuation rings. J. Algebra, 177, no. 1 (1995), pp. 77-101. | MR | Zbl

[33] Wang Fanggui - R. L. Mccasland, On strong Mori domains, J. Pure Appl. Algebra, 135 (1999), pp. 155-165. | MR | Zbl

[34] P. Zanardo - U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., 115 (1994), pp. 379-391. | MR | Zbl