@article{SEDP_1992-1993____A3_0, author = {Alinhac, S.}, title = {Temps de vie et comportement explosif des solutions d'\'equations d'ondes quasi-lin\'eaires en dimension deux}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:3}, pages = {1--12}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1992-1993}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1992-1993____A3_0/} }
TY - JOUR AU - Alinhac, S. TI - Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:3 PY - 1992-1993 SP - 1 EP - 12 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://archive.numdam.org/item/SEDP_1992-1993____A3_0/ LA - fr ID - SEDP_1992-1993____A3_0 ER -
%0 Journal Article %A Alinhac, S. %T Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:3 %D 1992-1993 %P 1-12 %I Ecole Polytechnique, Centre de Mathématiques %U http://archive.numdam.org/item/SEDP_1992-1993____A3_0/ %G fr %F SEDP_1992-1993____A3_0
Alinhac, S. Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1992-1993), Exposé no. 3, 12 p. http://archive.numdam.org/item/SEDP_1992-1993____A3_0/
[1] Une solution approchée en grands temps des équations d'Euler compressibles axisymétriques en dimension deux, Comm. in PDE, 17 (3 et 4), (1992), 447-490. | MR | Zbl
[2] Approximation près du temps d'explosion des solutions d'équations d'ondes quasi-linéaires en dimension deux Preprint, Paris-Sud/ Orsay (1992). | MR | Zbl
[3] Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux I et II, Preprint, Paris-Sud/ Orsay (1992 et 1993).
[4] The validity of geometrical optics for weak solutions of conservation laws Comm. Math. Phys. 98 (1985), 313-347. | MR | Zbl
et[5] On the radiation field of pulse solutions of the wave équation I, II, Proc. Roy. Soc. A, 269 (1962), 53-65 et 279 (1964), 386-394. | MR | Zbl
[6] The lifespan of classical solutions of non linear hyperbolic equations, Mittag Leffler report n° 5 (1985). | Zbl
[7] Non linear hyperbolic differential equations, Lectures, (1986-87).
[8] Non linear wave equations, formation of singularities Pitcher lectures in the Math. Sciences AMS (1990). | MR | Zbl
[9] Solutions of quasilinear wave equations with small initial data ; the third phase, non linear hyperbolic equations Proceedings, Bordeaux (1988), Lecture notes in mathematics 1402, Springer Verlag, 155-184. | MR | Zbl
[10] Blow up of radial solutions of utt = c2(ut)Δ u in three space dimensions Math. Aplicada e Comp. 4 (1985), 3-18. | Zbl
[11] Existence for large times of strict solutions of non linear wave equations in three space dimensions for small initial data, Comm. in Pure Appl. Math. 40, (1987), 79-109. | MR | Zbl
[12] Almost global existence to non linear wave equations in three space dimensions Comm. Pure Appl. Math. 37 (1984) 443-55. | MR | Zbl
et[13] Weighted L∞ and L1 estimates for solutions to the classical wave equation in three space dimensions Comm. Pure Appl. Math 37 (1984) 269-88. | Zbl
[14] Uniform decay estimates and the Lorentz invariance of the classical wave equation Comm. Pure Appl. Math. 38 (1985) 321-332. | MR | Zbl
[15] Compressible fluid flows and systems of conservation laws Springer Appl. Math. Sc. 53 (1984). | Zbl
[16] Resonantly interacting weakly non linear hyperbolic waves I. A single space variable, Stud. Appl. Math. 71 (1984) 149-179. | MR | Zbl
et[17] Asymptotic expansions for ordinary differential equations Krieger, New York (1976). | MR | Zbl