@article{SEDP_1999-2000____A9_0, author = {Klainerman, Sergiu}, title = {A {Commuting} {Vectorfields} {Approach} to {Strichartz} type {Inequalities} and {Applications} to {Quasilinear} {Wave} {Equations}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:9}, pages = {1--16}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1999-2000}, zbl = {1059.35021}, mrnumber = {1813172}, language = {en}, url = {http://archive.numdam.org/item/SEDP_1999-2000____A9_0/} }
TY - JOUR AU - Klainerman, Sergiu TI - A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:9 PY - 1999-2000 SP - 1 EP - 16 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_1999-2000____A9_0/ LA - en ID - SEDP_1999-2000____A9_0 ER -
%0 Journal Article %A Klainerman, Sergiu %T A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:9 %D 1999-2000 %P 1-16 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_1999-2000____A9_0/ %G en %F SEDP_1999-2000____A9_0
Klainerman, Sergiu. A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 9, 16 p. http://archive.numdam.org/item/SEDP_1999-2000____A9_0/
[B-C1] H. Bahouri and J.Y.Chemin “Equations d’ondes quasilineaires et effect dispersif” American Journal of Mathematics 121(1999), 1337–1377. | Zbl
[B-C2] H. Bahouri and J.Y.Chemin “Equations d’ondes quasilineaires et estimations de Strichartz” International Mathematics Research Notices 21(1999) 1141–1177. | Zbl
[C-K1] D.Christodoulou, S.Klainerman, “Asymptotic properties of linear field equations in Minkowski space". Comm.Pure Appl.Math. XLIII,(1990), 137-199. | Zbl
[C-K2] D.Christodoulou, S.Klainerman, “The global non linear stability of the Minkowski space". Princeton Mathematical series, 41 (1993). | Zbl
[Ho] L.Hormander, “Lectures on Nonlinear Hyperbolic Equations Mathematics and Applications 26, Springer-Verlag (1987). | Zbl
[K-T] Keel-Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120 (1998) 955-980. | Zbl
[Kl1] S.Klainerman “Uniform decay estimates and the Lorentz invariance of the classical wave equation". Comm.Pure.Appl.Math. 38, (1985), 321-332. | Zbl
[Kl2] S.Klainerman, “Remarks on the global Sobolev inequalities in Minkowski Space". Comm.Pure.Appl.Math. 40, (1987), 111-117. | Zbl
[Kl3] S.Klainerman, “The null condition and global existence to nonlinear wave equations". Lect. Appl. Math. 23, (1986), 293-326. | Zbl
[Kl4] S.Klainerman, “A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations” preprint. | Zbl
[Kl-R] S. Klainerman, I. Rodniansky “Improved regularity results for quasilinear wave equations” in preparation.
[Kl-Si] S.Klainerman, T. Sideris “On Almost Global Existence for Nonrelativistic Wave Equations in 3D” Comm.Pure.Appl.Math. 49 1996, 307-321 | Zbl
[L] O. Liess “Decay Estimates in Crystal Optics” Assymptotic Analysis 4(1991), 61-95. | Zbl
[M] C. Morawetz “The Limiting Amplitude Principle” Comm.Pure.Appl.Math. 15, 1962, 349-362. | Zbl
[S1] H. Smith “A parametrix construction for wave equations with coefficients” Ann Inst Fourier de Grenoble 48(3) 1994, 797-835. | Numdam | Zbl
[S2] H. Smith “ Strichartz and Nullform Estimates for Metrics of Bounded Curvature” preprint.
[T1] D. Tataru “Strichartz Estimates for operators with nonsmooth coefficients and the nonlinear wave equation” To appear in AJM | Zbl
[T2] D. Tataru ‘Strichartz Estimates for second order hyperbolic operators with nonsmooth coefficients III” preprint | Zbl