A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 9, 16 p.
@article{SEDP_1999-2000____A9_0,
     author = {Klainerman, Sergiu},
     title = {A {Commuting} {Vectorfields} {Approach} to {Strichartz} type {Inequalities} and {Applications} to {Quasilinear} {Wave} {Equations}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:9},
     pages = {1--16},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1999-2000},
     zbl = {1059.35021},
     mrnumber = {1813172},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_1999-2000____A9_0/}
}
TY  - JOUR
AU  - Klainerman, Sergiu
TI  - A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:9
PY  - 1999-2000
SP  - 1
EP  - 16
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_1999-2000____A9_0/
LA  - en
ID  - SEDP_1999-2000____A9_0
ER  - 
%0 Journal Article
%A Klainerman, Sergiu
%T A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:9
%D 1999-2000
%P 1-16
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_1999-2000____A9_0/
%G en
%F SEDP_1999-2000____A9_0
Klainerman, Sergiu. A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 9, 16 p. http://archive.numdam.org/item/SEDP_1999-2000____A9_0/

[B-C1] H. Bahouri and J.Y.Chemin “Equations d’ondes quasilineaires et effect dispersif” American Journal of Mathematics 121(1999), 1337–1377. | Zbl

[B-C2] H. Bahouri and J.Y.Chemin “Equations d’ondes quasilineaires et estimations de Strichartz” International Mathematics Research Notices 21(1999) 1141–1177. | Zbl

[C-K1] D.Christodoulou, S.Klainerman, “Asymptotic properties of linear field equations in Minkowski space". Comm.Pure Appl.Math. XLIII,(1990), 137-199. | Zbl

[C-K2] D.Christodoulou, S.Klainerman, “The global non linear stability of the Minkowski space". Princeton Mathematical series, 41 (1993). | Zbl

[Ho] L.Hormander, “Lectures on Nonlinear Hyperbolic Equations Mathematics and Applications 26, Springer-Verlag (1987). | Zbl

[K-T] Keel-Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120 (1998) 955-980. | Zbl

[Kl1] S.Klainerman “Uniform decay estimates and the Lorentz invariance of the classical wave equation". Comm.Pure.Appl.Math. 38, (1985), 321-332. | Zbl

[Kl2] S.Klainerman, “Remarks on the global Sobolev inequalities in Minkowski Space". Comm.Pure.Appl.Math. 40, (1987), 111-117. | Zbl

[Kl3] S.Klainerman, “The null condition and global existence to nonlinear wave equations". Lect. Appl. Math. 23, (1986), 293-326. | Zbl

[Kl4] S.Klainerman, “A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations” preprint. | Zbl

[Kl-R] S. Klainerman, I. Rodniansky “Improved regularity results for quasilinear wave equations” in preparation.

[Kl-Si] S.Klainerman, T. Sideris “On Almost Global Existence for Nonrelativistic Wave Equations in 3D” Comm.Pure.Appl.Math. 49 1996, 307-321 | Zbl

[L] O. Liess “Decay Estimates in Crystal Optics” Assymptotic Analysis 4(1991), 61-95. | Zbl

[M] C. Morawetz “The Limiting Amplitude Principle” Comm.Pure.Appl.Math. 15, 1962, 349-362. | Zbl

[S1] H. Smith “A parametrix construction for wave equations with C 1,1 coefficients” Ann Inst Fourier de Grenoble 48(3) 1994, 797-835. | Numdam | Zbl

[S2] H. Smith “ Strichartz and Nullform Estimates for Metrics of Bounded Curvature” preprint.

[T1] D. Tataru “Strichartz Estimates for operators with nonsmooth coefficients and the nonlinear wave equation” To appear in AJM | Zbl

[T2] D. Tataru ‘Strichartz Estimates for second order hyperbolic operators with nonsmooth coefficients III” preprint | Zbl