Many–Body Aspects of Approach to Equilibrium
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 19, 10 p.
Carlen, Eric 1 ; Carvalho, M.C. 2 ; Loss, Michael 1

1 School of Mathematics, Georgia Tech, Atlanta, GA 30332
2 On leave from Departamento do Mathématica, de Faculdade ci Ciencias de Lisboa, 1700 Lisboa codex Portugal
@article{SEDP_2000-2001____A19_0,
     author = {Carlen, Eric and Carvalho, M.C. and Loss, Michael},
     title = {Many{\textendash}Body {Aspects} of {Approach} to {Equilibrium}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:19},
     pages = {1--10},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     zbl = {02124169},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_2000-2001____A19_0/}
}
TY  - JOUR
AU  - Carlen, Eric
AU  - Carvalho, M.C.
AU  - Loss, Michael
TI  - Many–Body Aspects of Approach to Equilibrium
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:19
PY  - 2000-2001
SP  - 1
EP  - 10
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2000-2001____A19_0/
LA  - en
ID  - SEDP_2000-2001____A19_0
ER  - 
%0 Journal Article
%A Carlen, Eric
%A Carvalho, M.C.
%A Loss, Michael
%T Many–Body Aspects of Approach to Equilibrium
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:19
%D 2000-2001
%P 1-10
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2000-2001____A19_0/
%G en
%F SEDP_2000-2001____A19_0
Carlen, Eric; Carvalho, M.C.; Loss, Michael. Many–Body Aspects of Approach to Equilibrium. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 19, 10 p. http://archive.numdam.org/item/SEDP_2000-2001____A19_0/

[1] Carlen, E., Carvalho, M. and Loss, M., (in preparation).

[2] Carlen, E., Gabetta, E. and Toscani, G., Propagation of Smoothness and the Rate of Exponential Convergence to Equilibrium for a Spatially Homogeneous Maxwellian Gas, Commun. Math. Phys. 205, 521–546, 1999. | MR | Zbl

[3] Diaconis, P. and Saloff–Coste, L., Bounds for Kac’s Master equation, Commun. Math. Phys. 209, 729–755, 2000. | Zbl

[4] Janvresse, E., Spectral Gap for Kac’s model of Boltzmann Equation, Preprint 1999.

[5] Kac, M., Foundations of kinetic theory, Proc. 3rd Berkeley symp. Math. Stat. Prob., J. Neyman, ed. Univ. of California, vol 3, pp. 171–197, 1956. | MR | Zbl

[6] Gruenbaum, F. A., Propagation of chaos for the Boltzmann equation, Arch. Rational. Mech. Anal. 42, 323–345, 1971. | MR | Zbl

[7] Gruenbaum, F. A., Linearization for the Boltzmann equation, Trans. Amer. Math. Soc. 165, 425–449, 1972. | MR | Zbl

[8] McKean, H., Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas, Arch. Rational Mech. Anal. 21, 343–367, 1966.