Asymptotiques de Lifshitz
Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 4, 12 p.

Cet exposé a pour but de présenter des résultats récents de l’auteur concernant les asymptotiques de Lifshitz pour des perturbations aléatoires d’opérateurs de Schrödinger périodiques. Certains de ces résultats ont été obtenus en collaboration avec T. Wolff.

@article{SEDP_2001-2002____A4_0,
     author = {Klopp, Fr\'ed\'eric},
     title = {Asymptotiques de Lifshitz},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2001-2002},
     note = {talk:4},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2001-2002____A4_0}
}
Klopp, Frédéric. Asymptotiques de Lifshitz. Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 4, 12 p. http://www.numdam.org/item/SEDP_2001-2002____A4_0/

[1] S. Agmon. On positive solutions of elliptic operators with periodic coefficients in L 2 (R n ), spectral results and extension to elliptic operators on Riemannian manifolds. Dans I. Knowles and R. Lewis, éditeurs, Differential equations, pages 7–17, Birmingham, 1984. North-Holland. | MR 799327 | Zbl 0564.35033

[2] J.-M. Barbaroux, J.-M. Combes, et P. Hislop. Landau hamiltonians with unbounded random potentials. Letters in Mathematical Physics, 40(4) :355–369, 1997. | MR 1453246 | Zbl 0894.47028

[3] M. Sh Birman. Perturbations of operators with periodic coefficients. Dans Schrödinger Operators : standard and non-standard, Dubna, 1988.

[4] R. Carmona et J. Lacroix. Spectral Theory of Random Schrödinger Operators. Birkhäuser, Basel, 1990. | MR 1102675 | Zbl 0717.60074

[5] A. Dembo et O. Zeitouni. Large deviation techniques and applications. Jones and Bartlett Publi-shers, Boston, 1992. | MR 1202429 | Zbl 0793.60030

[6] J.-M. Deuschel et D. Stroock. Large deviations, volume 137 de Pure and applied Mathematics. Academic Press, 1989. | MR 997938 | Zbl 0705.60029

[7] M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. | Zbl 0287.34016

[8] F. Ghribi. Asymptotique de Lifshitz pour des opérateurs de Schrödinger à champ magnétique aléatoire. Thèse de doctorat, Université Paris 13, Villetaneuse. en préparation.

[9] B. Helffer et A. Mohamed. Asymptotic of the density of states for the Schrödinger operator with periodic electric potential. Duke Math. J., 92(1) :1–60, 1998. | MR 1609321 | Zbl 0951.35104

[10] W. Kirsch. Random Schrödinger operators. Dans A. Jensen, H. Holden, éditeurs, Schrödinger Operators, number 345 in Lecture Notes in Physics, Berlin, 1989. Springer Verlag. Proceedings, Sonderborg, Denmark 1988. | MR 1037323 | Zbl 0712.35070

[11] W. Kirsch et F. Martinelli. On the spectrum of Schrödinger operators with a random potential. Communications in Mathematical Physics, 85 :329–350, 1982. | MR 678150 | Zbl 0506.60058

[12] W. Kirsch et F. Martinelli. Large deviations and Lifshitz singularities of the integrated density of states of random hamiltonians. Communications in Mathematical Physics, 89 :27–40, 1983. | MR 707770 | Zbl 0517.60071

[13] W. Kirsch et B. Simon. Lifshitz tails for the Anderson model. Journal of Statistical Physics, 38 :65–76, 1985. | MR 784931

[14] W. Kirsch, P. Stollmann, et G. Stolz. Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations, 6(3) :241–268, 1998. | MR 1630995 | Zbl 0927.60067

[15] F. Klopp. Une remarque à propos des asymptotiques de Lifshitz internes. Disponible sur http://zeus.math.univ-paris13.fr/~klopp/publi.html.

[16] F. Klopp. Localization for some continuous random Schrödinger operators. Communications in Mathematical Physics, 167 :553–570, 1995. | MR 1316760 | Zbl 0820.60044

[17] F. Klopp. Band edge behaviour for the integrated density of states of random Jacobi matrices in dimension 1. Journal of Statistical Physics, 90(3-4) :927–947, 1998. | MR 1616938 | Zbl 0924.47057

[18] F. Klopp et J. Ralston. Endpoints of the spectrum of periodic operators are generically simple. Methods and Applications of Analysis, 7(3) :459–464, 2000. | MR 1869296 | Zbl 1040.35050

[19] F. Klopp et T. Wolff. Lifshitz tails for 2-dimensional random Schrödinger operators. Jour. d’Analyse Math. A paraître. | Zbl 1058.47034

[20] F. Klopp. Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J., 98(2) :335–396, 1999. | MR 1695202 | Zbl 1060.82509

[21] F. Klopp. Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix. Rev. Math. Phys., 12(4) :575–620, 2000. | MR 1763843 | Zbl 1044.82007

[22] F. Klopp. Internal lifshitz tails for schrödinger operators with random potentials. Jour. Math. Phys., 2002. A paraître. | MR 1902460 | Zbl 1061.82017

[23] F. Klopp and L. Pastur. Lifshitz tails for random Schrödinger operators with negative singular Poisson potential. Comm. Math. Phys., 206(1) :57–103, 1999. | MR 1736990 | Zbl 0937.60098

[24] P. Kuchment. Floquet theory for partial differential equations, volume 60 of Operator Theory : Advances and Applications. Birkhäuser, Basel, 1993. | MR 1232660 | Zbl 0789.35002

[25] I. M. Lifshitz. Structure of the energy spectrum of impurity bands in disordered solid solutions. Soviet Physics JETP, 17 :1159–1170, 1963.

[26] I. M. Lifshitz. Energy spectrum structure and quantum states of disordered condensed systems. Soviet Physics Uspekhi, 7 :549–573, 1965. | MR 181368

[27] I.M. Lifshitz, S.A. Gredeskul, et L.A. Pastur. Introduction to the theory of disordered systems. Wiley, New-York, 1988. | MR 1042095

[28] H. McKean et P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30 :217–274, 1975. | Zbl 0319.34024

[29] H. P. McKean et E. Trubowitz. Hill’s surfaces and their theta functions. Bull. Amer. Math. Soc., 84(6) :1042–1085, 1978. | Zbl 0428.34026

[30] G. Mezincescu. Lifshitz singularities for periodic operators plus random potentials. Journal of Statistical Physics, 49 :1081–1090, 1987. | MR 935490 | Zbl 0971.82508

[31] G. Mezincescu. Internal Lifshits singularities for one dimensional Schrödinger operators. Communications in Mathematical Physics, 158 :315–325, 1993. | MR 1249597 | Zbl 0783.60062

[32] H. Najar. Asymptotique de la densité d’états intégrée des modèles aléatoires continus. Thèse de doctorat, Université Paris 13, Villetaneuse, November 2000.

[33] S. Nakao. On the spectral distribution of the Schrödinger operator with random potential. Japan Journal of Mathematics, 3 :117–139, 1977. | MR 651925 | Zbl 0375.60067

[34] L. Pastur. Behaviour of some Wiener integrals as t+ and the density of states of the Schrödinger equation with a random potential. Teor.-Mat.-Fiz, 32 :88–95, 1977. (in russian). | MR 449356 | Zbl 0353.60053

[35] L. Pastur et A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. | MR 1223779 | Zbl 0752.47002

[36] D. H. Phong et E. M. Stein. The Newton polyhedron and oscillatory integral operators. Acta Math., 179(1) :105–152, 1997. | MR 1484770 | Zbl 0896.35147

[37] M. Reed et B. Simon. Methods of Modern Mathematical Physics, Vol IV : Analysis of Operators. Academic Press, New-York, 1978. | MR 493421 | Zbl 0401.47001

[38] O. Saad. Comportement en grandes énergies de la densité d’états du modèle d’Anderson non borné. Thèse de doctorat, Université de Paris 13, Villetaneuse. en préparation.

[39] J. Sjöstrand. Microlocal analysis for periodic magnetic Schrödinger equation and related questions. Dans Microlocal analysis and applications, volume 1495 des Lecture Notes in Mathematics, Berlin, 1991. Springer Verlag. | MR 1178559 | Zbl 0761.35090

[40] M. M. Skriganov. Proof of the Bethe-Sommerfeld conjecture in dimension 2. Dokl. Akad. Nauk SSSR, 248(1) :39–42, 1979. | MR 549367 | Zbl 0435.35028

[41] P. Stollmann. Lifshitz asymptotics via linear coupling of disorder. Math. Phys. Anal. Geom., 2(3) :279–289, 1999. | MR 1736709 | Zbl 0956.60071

[42] A.S. Sznitman. Brownian motion, obstacles and random media. Springer-Verlag, Berlin, 1998. | MR 1717054 | Zbl 0973.60003

[43] V. Varchenko. Newton polyhedra and estimations of oscillatory integrals. Functional Analysis and its Applications, 8 :175–196, 1976. | Zbl 0351.32011