Dynamique des tourbillons de vorticité pour l’équation de Ginzburg-Landau parabolique
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 18, 16 p.
@article{SEDP_2006-2007____A18_0,
     author = {Bethuel, Fabrice and Orlandi, Giandomenico and Smets, Didier},
     title = {Dynamique des tourbillons de vorticit\'e pour l'\'equation de Ginzburg-Landau parabolique},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:18},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2006-2007},
     language = {fr},
     url = {http://archive.numdam.org/item/SEDP_2006-2007____A18_0/}
}
Bethuel, Fabrice; Orlandi, Giandomenico; Smets, Didier. Dynamique des tourbillons de vorticité pour l’équation de Ginzburg-Landau parabolique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 18, 16 p. http://archive.numdam.org/item/SEDP_2006-2007____A18_0/

[1] L. Almeida, F. Bethuel, Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998), 1–49. | MR 1617594 | Zbl 0904.35023

[2] F. Bethuel, G. Orlandi, Ginzburg-Landau functionals, phase transitions and vorticity. In Noncompact problems at the intersection of geometry, analysis, and topology, 35–47, Contemp. Math. 350, Amer. Math. Soc., (2004). | MR 2082389 | Zbl 1073.35085

[3] H. Brezis, J.M. Coron, H. Lieb, Harmonic maps with defects, Comm. Math. Phys.107 (1986), 649–705. | MR 868739 | Zbl 0608.58016

[4] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Birkhäuser, Boston, (1994). | MR 1269538 | Zbl 0802.35142

[5] F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interaction in dissipative Ginzburg-Landau dynamics, Duke Math. J. 130 (2005), 523-614. | MR 2184569 | Zbl 1087.35008

[6] F. Bethuel, G. Orlandi and D. Smets, Quantization and motion law for Ginzburg-Landau vortices, Arch. Rational Mech. Anal., 183 (2007), 315–370 | MR 2278409 | Zbl 1105.76062

[7] F. Bethuel, G. Orlandi and D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices, Comm. Math. Phys., à paraître.

[8] F. Bethuel, G. Orlandi and D. Smets, On the Cauchy problem for phase and vortices in the parabolic Ginzburg-Landau equation, Proceedings Centre de recherche Mathématique de Montréal,à paraître.

[9] M. Comte and P. Mironescu, Remarks on nonminimizing solutions of a Ginzburg-Landau type equation, Asymptotic Anal. 13 (1996), 199-215. | MR 1413860 | Zbl 0861.35023

[10] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D 77 (1994), 383-404. | MR 1297726 | Zbl 0814.34039

[11] R.L. Jerrard and H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rational Mech. Anal. 142 (1998), 99-125. | MR 1629646 | Zbl 0923.35167

[12] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math. 49 (1996), 323-359. | MR 1376654 | Zbl 0853.35058

[13] , S. Lojasiewicz, Une propiété topologique des sous-ensembles analytiques réels, Colloques internationaux du CNRS 117, Les équations aux dérivées partielles, 1963. | MR 160856 | Zbl 0234.57007

[14] L. Peres and J. Rubinstein, Vortex dynamics in U(1) Ginzburg-Landau models, Phys. D 64 (1993), 299-309. | MR 1214555 | Zbl 0772.35069

[15] P. Mironescu, Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symétrie radiale, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 593–598. | Zbl 0858.35038

[16] F. Pacard, T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications 39. Birkhäuser Boston, (2000). | MR 1763040 | Zbl 0948.35003

[17] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure App. Math. 57 (2004), 1627-1672. | MR 2082242 | Zbl 1065.49011

[18] S. Serfaty, Vortex Collision and Energy Dissipation Rates in the Ginzburg-Landau Heat Flow, preprint 2005.