Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 17, 5 p.
Nakanishi, Kenji 1 ; Takaoka, Hideo 2 ; Tsutsumi, Yoshio 1

1 Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
2 Department of Mathematics, Faculty of Science, Kobe University, Kobe 657-8501, Japan
@article{SEDP_2007-2008____A17_0,
     author = {Nakanishi, Kenji and Takaoka, Hideo and Tsutsumi, Yoshio},
     title = {Unique local existence of solution in low regularity space of the {Cauchy} problem for the {mKdV} equation with periodic boundary condition},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:17},
     pages = {1--5},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     mrnumber = {2532952},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_2007-2008____A17_0/}
}
TY  - JOUR
AU  - Nakanishi, Kenji
AU  - Takaoka, Hideo
AU  - Tsutsumi, Yoshio
TI  - Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:17
PY  - 2007-2008
SP  - 1
EP  - 5
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2007-2008____A17_0/
LA  - en
ID  - SEDP_2007-2008____A17_0
ER  - 
%0 Journal Article
%A Nakanishi, Kenji
%A Takaoka, Hideo
%A Tsutsumi, Yoshio
%T Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:17
%D 2007-2008
%P 1-5
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2007-2008____A17_0/
%G en
%F SEDP_2007-2008____A17_0
Nakanishi, Kenji; Takaoka, Hideo; Tsutsumi, Yoshio. Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 17, 5 p. http://archive.numdam.org/item/SEDP_2007-2008____A17_0/

[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal. 3 (1993), 107–156, 209–262. | MR | Zbl

[2] —, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math., New Ser. 3 (1997), 115–159. | MR | Zbl

[3] M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235–1293. | MR | Zbl

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness of KdV and modified KdV on the and 𝕋, J. Amer. Math. Soc 16 (2003), 705–749. | MR | Zbl

[5] A. Grünrock, An improved local wellposedness result for the modified KdV-equation, Int. Math. Res. Not. 61 (2004), 3287–3308. | MR | Zbl

[6] T. Kappeler and P. Topalov, Global well-posedness of mKdV in L 2 (𝕋,), Comm. Partial Differential Equations 30 (2005), 435–449. | MR | Zbl

[7] —, Global well-posedness of KdV in H -1 (𝕋,), Duke Math. J. 135 (2006), 327–360. | Zbl

[8] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | MR | Zbl

[9] —, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617–633. | MR | Zbl

[10] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268. | MR | Zbl

[11] H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not. 30 (2005), 1833–1847. | MR

[12] H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 56 (2004), 3009–3040. | MR

[13] T. Tao, Global well-posedness of the Benjamin-Ono equation in H 1 (), J. Hyperbolic Differ. Equ. 1 (2004), 27–49. | MR | Zbl