@article{SPS_1988__22__214_0, author = {Gilat, David and Meilijson, Isaac}, title = {A simple proof of a theorem of {Blackwell} and {Dubins} on the maximum of a uniformly integrable martingale}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {214--216}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {22}, year = {1988}, mrnumber = {960529}, zbl = {0655.60037}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1988__22__214_0/} }
TY - JOUR AU - Gilat, David AU - Meilijson, Isaac TI - A simple proof of a theorem of Blackwell and Dubins on the maximum of a uniformly integrable martingale JO - Séminaire de probabilités de Strasbourg PY - 1988 SP - 214 EP - 216 VL - 22 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1988__22__214_0/ LA - fr ID - SPS_1988__22__214_0 ER -
%0 Journal Article %A Gilat, David %A Meilijson, Isaac %T A simple proof of a theorem of Blackwell and Dubins on the maximum of a uniformly integrable martingale %J Séminaire de probabilités de Strasbourg %D 1988 %P 214-216 %V 22 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1988__22__214_0/ %G fr %F SPS_1988__22__214_0
Gilat, David; Meilijson, Isaac. A simple proof of a theorem of Blackwell and Dubins on the maximum of a uniformly integrable martingale. Séminaire de probabilités de Strasbourg, Tome 22 (1988), pp. 214-216. http://archive.numdam.org/item/SPS_1988__22__214_0/
[1] a. Une solution simple au problème de Skorokhod.b. Le problème de Skorokhod: complements. Sem. Prob. XIII, LN 721, Springer (1978). | Numdam | Zbl
& ,[2] A converse to the dominated convergence theorem, Illinois J. Math. 7 (1963), 508-514. | Zbl
& ,[3] One dimensional potential embedding, Sem. Prob. X LN 511, Springer (1976). | Numdam | Zbl
& ,[4] On the distribution of maxima of martingales, Proc. AMS 68 (1978), 337-338. | Zbl
& ,[5] A maximal theorem with function theoretic applications, Acta Math. 54 (1930), 81-116. | JFM
& ,[6] Convex majorization with an application to the length of critical paths, J. Appl. Prob. 16 (1970), 671-677. | Zbl
& ,[7] The Careteli-Davis solution to the H1-embedding problem and an optimal embedding in BM, in Sem. on Stochastic Processes, Birkhauser (1985). | Zbl
,[8] Inequalities for stopped Brownian motion, CWI Tract No. 21, Amsterdam, Holland (1986). | MR | Zbl
,