@article{SPS_1994__28__116_0, author = {Bertoin, Jean and Doney, R.A.}, title = {On conditioning random walks in an exponential family to stay nonnegative}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {116--121}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {28}, year = {1994}, mrnumber = {1329107}, zbl = {0814.60079}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1994__28__116_0/} }
TY - JOUR AU - Bertoin, Jean AU - Doney, R.A. TI - On conditioning random walks in an exponential family to stay nonnegative JO - Séminaire de probabilités de Strasbourg PY - 1994 SP - 116 EP - 121 VL - 28 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1994__28__116_0/ LA - fr ID - SPS_1994__28__116_0 ER -
%0 Journal Article %A Bertoin, Jean %A Doney, R.A. %T On conditioning random walks in an exponential family to stay nonnegative %J Séminaire de probabilités de Strasbourg %D 1994 %P 116-121 %V 28 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1994__28__116_0/ %G fr %F SPS_1994__28__116_0
Bertoin, Jean; Doney, R.A. On conditioning random walks in an exponential family to stay nonnegative. Séminaire de probabilités de Strasbourg, Tome 28 (1994), pp. 116-121. http://archive.numdam.org/item/SPS_1994__28__116_0/
[1] On conditioning a random walk to stay nonnegative, Ann. Probab. (to appear). | MR | Zbl
and :[2] Regular Variation. Cambridge University Press 1987, Cambridge. | MR | Zbl
, , and :[3] Discrete potential theory and boundaries, J. Math. Mecha. 8 (1959), 433-458. | MR | Zbl
:[4] Limit theorems for random walks conditioned to stay positive, Ann. Probab.20 (1992), 801-824. | MR | Zbl
:[5] On the probability of large deviations for sums of independent random variables, Theory Probab. Appl. 10 (1965), 287-97. | MR | Zbl
:[6] Markov Chains. North Holland 1975, Amsterdam. | MR | Zbl
:[7] Principles of Random Walks. Van Nostrand 1964, Princeton. | MR | Zbl
:[8] The exponential rate of convergence of the maximum of a random walk, J. Appl. Prob.12 (1975), 279-288. | MR | Zbl
and :