Théorème de Ray-Knight dans un arbre : une approche algébrique
Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 270-301.
@article{SPS_2002__36__270_0,
     author = {Leuridan, Christophe},
     title = {Th\'eor\`eme de {Ray-Knight} dans un arbre : une approche alg\'ebrique},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {270--301},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {36},
     year = {2002},
     mrnumber = {1971591},
     zbl = {1041.60062},
     language = {fr},
     url = {http://archive.numdam.org/item/SPS_2002__36__270_0/}
}
TY  - JOUR
AU  - Leuridan, Christophe
TI  - Théorème de Ray-Knight dans un arbre : une approche algébrique
JO  - Séminaire de probabilités de Strasbourg
PY  - 2002
SP  - 270
EP  - 301
VL  - 36
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_2002__36__270_0/
LA  - fr
ID  - SPS_2002__36__270_0
ER  - 
%0 Journal Article
%A Leuridan, Christophe
%T Théorème de Ray-Knight dans un arbre : une approche algébrique
%J Séminaire de probabilités de Strasbourg
%D 2002
%P 270-301
%V 36
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_2002__36__270_0/
%G fr
%F SPS_2002__36__270_0
Leuridan, Christophe. Théorème de Ray-Knight dans un arbre : une approche algébrique. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 270-301. http://archive.numdam.org/item/SPS_2002__36__270_0/

[1] Bertoin J. Lévy processes. Cambridge tracts in mathematics 121 (1996). | MR | Zbl

[2] Biane P., Yor M. Sur la loi des temps locaux browniens pris en temps exponentiel. Séminaire de Probabilité XXII Lecture Notes in Mathematics 1321 (1988), 454-466. | Numdam | MR | Zbl

[3] Blumenthal R.M., Getoor R.K. Markov Processes and Potential Theory, Academic Press, New York (1968). | MR | Zbl

[4] Dynkin E.B. Local times and quantum fields. Seminar on Stochastic Processes, Birkhauser 26-4 (1983), 69-89. | MR | Zbl

[5] Eisenbaum N. Dynkin's isomorphism theorem and Ray-Knight theorems. Probability Theory and Related Fields 99 (1994), 321-335. | MR | Zbl

[6] Eisenbaum N. Une version sans conditionnement du théorème d'isomorphisme de Dynkin. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 266-289. | Numdam | MR | Zbl

[7] Eisenbaum N., Kaspi H. A necessary and sufficient condition for the Markov property of the local time process. Annals of Probability 21-3 (1993), 1591-1598. | MR | Zbl

[8] Eisenbaum N., Kaspi H. A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 260-265. | Numdam | MR | Zbl

[9] Eisenbaum N., Kaspi H. On the Markov property of local time for Markov processes on graphs. Stochastic Processes and their Applications 64 (1996), 153-172. | MR | Zbl

[10] Fitzsimmons.,Pitman J. Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Processes and their Applications 79 (1999), 117-134. | MR | Zbl

[11] Jeulin T. Ray-Knight's theorem on Brownian local times and Tanaka's formula. Seminar on Stochastic Processes, Birkhauser (1983) 131-142. | MR | Zbl

[12] Knight F.B. Random walks and a sojourn density process of Brownian motion. Transactions of American Mathematical Society 109 (1963) 56-86. | MR | Zbl

[13] Leuridan C. Le théorème de Ray-Knight à temps fixe. Séminaire de Probabilité XXXII Lecture Notes in Mathematics 1686 (1998), 376-396. | Numdam | MR | Zbl

[14] Marcus M.B., Rosen J. Sample path properties of local times of strongly symmetric Markov processes via Gaussian processes. Annals of probability 20-4 (1992), 1603-1684. | MR | Zbl

[15] Marcus M.B., Rosen J. Moment generating functions for local times of strongly symmetric Markov processes and random walks. Proceedings of the conference "Probability in Banach Spaces" Birkhauser 8 (1992). | MR | Zbl

[16] Meyer P.A. Sur les lois de certaines fonctionnelles additives : application aux temps locaux Publications de l'Institut de Statistiques des Universités de Paris, 15 (1966), 295-310. | MR | Zbl

[17] Pitman J., Yor M. A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwante Gebiete 59 (1982) 425-457. | MR | Zbl

[18] Ray D. Sojourn times of diffusion processes. Illinois Journal of Mathematics 7 (1963) 615-630. | MR | Zbl

[19] Rogers L.C.G., Williams D. Diffusions, Markov processes, and Martingales Volume 1 : Foundations, second edition, John Wiley and Sons (1994). | MR | Zbl

[20] Sheppard P. On the Ray-Knight property of local times. Journal of London Mathematical Society 31 (1985), 377-384. | MR | Zbl

[21] Walsh J.B. Excursions and local time. Temps Locaux, Astérisque 52-53 (1978),159-192.