@article{SPS_2002__36__419_0, author = {Arnaudon, Marc and Thalmaier, Anton}, title = {Horizontal martingales in vector bundles}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {419--456}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {36}, year = {2002}, mrnumber = {1971603}, zbl = {1046.58013}, language = {en}, url = {http://archive.numdam.org/item/SPS_2002__36__419_0/} }
TY - JOUR AU - Arnaudon, Marc AU - Thalmaier, Anton TI - Horizontal martingales in vector bundles JO - Séminaire de probabilités de Strasbourg PY - 2002 SP - 419 EP - 456 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_2002__36__419_0/ LA - en ID - SPS_2002__36__419_0 ER -
Arnaudon, Marc; Thalmaier, Anton. Horizontal martingales in vector bundles. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 419-456. http://archive.numdam.org/item/SPS_2002__36__419_0/
[1] Manifold-valued martingales, changes ofprobabilities, and smoothness of finely harmonic maps, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 6, 765-791. | Numdam | MR | Zbl
, , and ,[2] Complete lifts of connections and stochastic Jacobi fields, J. Math. Pures Appl. (9) 77 (1998), no. 3, 283-315. | MR | Zbl
and ,[3] _, Stability of stochastic differential equations in manifolds, Séminaire de Probabilités, XXXII, Springer, Berlin, 1998, pp. 188-214. | Numdam | MR | Zbl
[4] Une approche probabiliste du théorème de l'indice (Atiyah-Singer) (d'après J.-M. Bismut), Astérisque (1986), no. 133-134, 7-18, Seminar Bouibaki, Vol. 1984/85. | Numdam | MR | Zbl
,[5] Characterizing Yang-Mills fields by stochastic parallel transport, J. Funct. Anal. 155 (1998), no. 2, 536-549. | MR | Zbl
,[6] _, Yang-Mills fields and stochastic parallel transport in small geodesic balls, Stochastic Process. Appl. 89 (2000), no. 2, 213-226. | MR | Zbl
[7] Heat kernels and Dirac operators, Springer-Verlag, Berlin, 1992. | MR | Zbl
, , and ,[8] Stochastic parallel displacement of tensors, Probabilistic methods in mathematical physics (Siena, 1991), World Sci. Publishing, River Edge, NJ, 1992, pp. 127-139. | MR
,[9] Heat equation derivative formulas for vector bundles, J. Funct. Anal., to appear. | MR | Zbl
and ,[10] On the geometry of diffusion operators and stochastic flows, Springer-Verlag,Berlin, 1999. | MR | Zbl
, , and ,[11] En marge de l'exposé de Meyer "Géométrie différentielle stochastique", Séminaire de Probabilités, XVI, Supplément, Springer, Berlin, 1982, pp. 208-216. | EuDML | Numdam | MR | Zbl
,[12] _, Stochastic calculus in manifolds, Springer-Verlag, Berlin, 1989. With an appendix by P.-A. Meyer. | Zbl
[13] Spin geometry, Princeton University Press, Princeton, NJ, 1989. | MR | Zbl
and ,[14] Stochastic Jacobi fields, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), Dekker, New York, 1979, pp. 203-235. | MR | Zbl
,[15] _, Stochastic analysis, Springer-Verlag, Berlin, 1997.
[16] Géometrie différentielle stochastique (bis), Séminaire de Probabilités, XVI, Supplément, Springer, Berlin, 1982, pp. 165-207. | EuDML | Numdam | MR | Zbl
,[17] Elliptic operators, topology and asymptotic methods, second ed., Longman, Harlow, 1998. | MR | Zbl
,[18] A stochastic criterion for Yang-Mills connections, Diffusion processes and related problems in analysis, Vol. I (Evanston, IL, 1989), Birkhäuser Boston, Boston, MA, 1990, pp. 313-322. | MR | Zbl
,[19] Tangent and cotangent bundles: differential geometry, Marcel Dekker Inc., New York, 1973, Pure and Applied Mathematics, No. 16. | MR | Zbl
and ,