We show that the Gromov-Witten theory of Calabi-Yau hypersurfaces matches, in genus zero and after an analytic continuation, the quantum singularity theory (FJRW theory) recently introduced by Fan, Jarvis and Ruan following a proposal of Witten. Moreover, on both sides, we highlight two remarkable integral local systems arising from the common formalism of -integral structures applied to the derived category of the hypersurface {W=0} and to the category of graded matrix factorizations of W. In this setup, we prove that the analytic continuation matches Orlov equivalence between the two above categories.
@article{PMIHES_2014__119__127_0, author = {Chiodo, Alessandro and Iritani, Hiroshi and Ruan, Yongbin}, title = {Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and {Orlov} equivalence}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {127--216}, publisher = {Springer Berlin Heidelberg}, address = {Berlin/Heidelberg}, volume = {119}, year = {2014}, doi = {10.1007/s10240-013-0056-z}, mrnumber = {3210178}, zbl = {1298.14042}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-013-0056-z/} }
TY - JOUR AU - Chiodo, Alessandro AU - Iritani, Hiroshi AU - Ruan, Yongbin TI - Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence JO - Publications Mathématiques de l'IHÉS PY - 2014 SP - 127 EP - 216 VL - 119 PB - Springer Berlin Heidelberg PP - Berlin/Heidelberg UR - http://archive.numdam.org/articles/10.1007/s10240-013-0056-z/ DO - 10.1007/s10240-013-0056-z LA - en ID - PMIHES_2014__119__127_0 ER -
%0 Journal Article %A Chiodo, Alessandro %A Iritani, Hiroshi %A Ruan, Yongbin %T Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence %J Publications Mathématiques de l'IHÉS %D 2014 %P 127-216 %V 119 %I Springer Berlin Heidelberg %C Berlin/Heidelberg %U http://archive.numdam.org/articles/10.1007/s10240-013-0056-z/ %R 10.1007/s10240-013-0056-z %G en %F PMIHES_2014__119__127_0
Chiodo, Alessandro; Iritani, Hiroshi; Ruan, Yongbin. Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publications Mathématiques de l'IHÉS, Tome 119 (2014), pp. 127-216. doi : 10.1007/s10240-013-0056-z. http://archive.numdam.org/articles/10.1007/s10240-013-0056-z/
[1.] Gromov-Witten theory of Deligne-Mumford stacks, Am. J. Math., Volume 130 (2008), pp. 1337-1398 | DOI | MR | Zbl
[2.] Compactifying the space of stable maps, J. Am. Math. Soc., Volume 15 (2002), pp. 27-75 | DOI | MR | Zbl
[3.] D-branes on Calabi-Yau manifolds, Progress in String Theory (2005), pp. 1-152 | MR | Zbl
[4.] Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., Volume 3 (1994), pp. 493-535 | MR | Zbl
[5.] Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math., Volume 207 (2006), pp. 876-927 | DOI | MR | Zbl
[6.] L. A. Borisov and R. Paul Horja, On the better-behaved version of the GKZ hypergeometric system. | arXiv | Zbl
[7.] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, 1986. https://tspace.library.utoronto.ca/bitstream/1807/16682/1/maximal_cohen-macaulay_modules_1986.pdf.
[8.] Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., Volume 88 (1987), pp. 165-182 | DOI | MR | Zbl
[9.] Derived autoequivalences and a weighted Beilinson resolution, J. Geom. Phys., Volume 58 (2008), pp. 743-760 | DOI | MR | Zbl
[10.] Orbifold Gromov-Witten theory, Orbifolds in Mathematics and Physics (2002), pp. 25-85 | MR | Zbl
[11.] Stable twisted curves and their r-spin structures (Courbes champêtres stables et leurs structures r-spin), Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1635-1689 | DOI | Numdam | MR | Zbl
[12.] A. Chiodo and J. Nagel, in preparation.
[13.] Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., Volume 182 (2010), pp. 117-165 | DOI | MR | Zbl
[14.] LG/CY correspondence: the state space isomorphism, Adv. Math., Volume 227 (2011), pp. 2157-2188 | DOI | MR | Zbl
[15.] A. Chiodo and Y. Ruan, A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence, Annales de l’Institut Fourier, to appear. http://www-fourier.ujf-grenoble.fr/~chiodo/framework. | Numdam | MR
[16.] Twisted r-spin potential and Givental’s quantization, Adv. Theor. Math. Phys., Volume 13 (2009), pp. 1335-1369 | DOI | MR | Zbl
[17.] Computing genus-zero twisted Gromov-Witten invariants, Duke Math. J., Volume 147 (2009), pp. 377-438 | DOI | MR | Zbl
[18.] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, in preparation.
[19.] The quantum orbifold cohomology of weighted projective spaces, Acta Math., Volume 202 (2009), pp. 139-193 | DOI | MR | Zbl
[20.] The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett., Volume 19 (2012), pp. 997-1005 | DOI | MR | Zbl
[21.] Quantum Riemann-Roch, Lefschetz and Serre, Ann. Math. (2), Volume 165 (2007), pp. 15-53 | DOI | MR | Zbl
[22.] Compact generators in categories of matrix factorizations, Duke Math. J., Volume 159 (2011), pp. 223-274 | DOI | MR | Zbl
[23.] Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., Volume 260 (1980), pp. 35-64 | DOI | MR | Zbl
[24.] Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | DOI | MR | Zbl
[25.] H. Fan T. Jarvis, and Y. Ruan, The Witten equation and its virtual fundamental cycle. | arXiv
[26.] The Witten equation, mirror symmetry and quantum singularity theory, Ann. Math., Volume 178 (2013), pp. 1-106 | DOI | MR | Zbl
[27.] Hypergeometric functions and toral manifolds, Funkc. Anal. Prilozh., Volume 23 (1989), pp. 12-26 | MR | Zbl
[28.] A mirror theorem for toric complete intersections, Topological Field Theory, Primitive Forms and Related Topics (1998), pp. 141-175 | MR | Zbl
[29.] Symplectic geometry of Frobenius structures, Frobenius Manifolds (2004), pp. 91-112 | MR | Zbl
[30.] Calabi-Yau manifolds and renormalization group flows, Nucl. Phys. B, Volume 324 (1989), pp. 371-390 | DOI | MR | Zbl
[31.] Principles of Algebraic Geometry, Wiley Classics Library (1994) | MR | Zbl
[32.] Quantum cohomology via D-modules, Topology, Volume 44 (2005), pp. 263-281 | DOI | MR | Zbl
[33.] M. A. Guest and H. Sakai, Orbifold quantum D-modules associated to weighted projective spaces. | arXiv
[34.] M. Herbst, K. Hori, and D. C. Page, Phases of theories in 1+1 dimensions with boundary. | arXiv
[35.] tt∗ geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math., Volume 555 (2003), pp. 77-161 | MR | Zbl
[36.] Unfoldings of meromorphic connections and a construction of Frobenius manifolds, Frobenius Manifolds (2004), pp. 113-144 | MR | Zbl
[37.] F-term equations near Gepner points, J. High Energy Phys., Volume 1 (2005) | DOI | MR
[38.] R. Paul Horja, Hypergeometric functions and mirror symmetry in toric varieties. | arXiv
[39.] Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, Mirror Symmetry. V (2006), pp. 405-439 | MR | Zbl
[40.] Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math., Volume 610 (2007), pp. 29-69 | MR | Zbl
[41.] Quantum D-modules and generalized mirror transformations, Topology, Volume 47 (2008), pp. 225-276 | DOI | MR | Zbl
[42.] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., Volume 222 (2009), pp. 1016-1079 | DOI | MR | Zbl
[43.] H. Iritani, Quantum cohomology and periods, Annales de l’Institut Fourier, to appear. | arXiv | Numdam | MR | Zbl
[44.] Hodge theoretic aspects of mirror symmetry, From Hodge theory to integrability and TQFT tt*-geometry (2008), pp. 87-174 | MR | Zbl
[45.] The Riemann-Roch theorem for complex V-manifolds, Osaka J. Math., Volume 16 (1979), pp. 151-159 | MR | Zbl
[46.] Homological Algebra of Mirror Symmetry (1995), pp. 120-139 | MR | Zbl
[47.] Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Volume 164 (1994), pp. 525-562 | DOI | MR | Zbl
[48.] Chern classes and the periods of mirrors, Math. Res. Lett., Volume 6 (1999), pp. 141-149 | DOI | MR | Zbl
[49.] Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces (1999) | MR | Zbl
[50.] E. Mann and T. Mignon, Quantum D-modules for toric nef complete intersections. | arXiv
[51.] Criticality, catastrophes, and compactifications, Physics and Mathematics of Strings (1990), pp. 389-433 | MR | Zbl
[52.] Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | MR | Zbl
[53.] Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. II (2009), pp. 503-531 | MR | Zbl
[54.] Rational curves on hypersurfaces (after A. Givental), Astérisque, Volume 252 (1998), pp. 307-340 | Numdam | MR | Zbl
[55.] La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque, Volume 130 (1985), pp. 11-47 | Numdam | MR | Zbl
[56.] Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J., Volume 161 (2012), pp. 1863-1926 | DOI | MR | Zbl
[57.] A. Polishchuk and A. Vaintrob, Matrix Factorizations and Cohomological Field Theory. | arXiv
[58.] Loop Groups (1986) | MR | Zbl
[59.] A construction of Frobenius manifolds with logarithmic poles and applications, Commun. Math. Phys., Volume 287 (2009), pp. 1145-1187 | DOI | MR | Zbl
[60.] A reconstruction theorem for genus zero Gromov-Witten invariants of stacks, Am. J. Math., Volume 130 (2008), pp. 1427-1443 | DOI | MR | Zbl
[61.] The higher residue pairings for a family of hypersurface singular points, Singularities, Part 2 (1983), pp. 441-463 | MR | Zbl
[62.] Equivalence between GIT quotients of Landau-Ginzburg B-models, Commun. Math. Phys., Volume 304 (2011), pp. 411-432 | DOI | MR | Zbl
[63.] Braid group actions on derived categories of coherent sheaves, Duke Math. J., Volume 108 (2001), pp. 37-108 | DOI | MR | Zbl
[64.] Intersection form for quasi-homogeneous singularities, Compos. Math., Volume 34 (1977), pp. 211-223 | Numdam | MR | Zbl
[65.] Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory, Volume 18 (1999), pp. 33-76 | DOI | MR | Zbl
[66.] Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol., Volume 14 (2010), pp. 1-81 | DOI | MR | Zbl
[67.] Catastrophes and the classification of conformal theories, Phys. Lett. B, Volume 218 (1989), pp. 51-58 | DOI | MR
[68.] Stability of Landau-Ginzburg branes, J. Math. Phys., Volume 46 (2005) | DOI | MR | Zbl
[69.] Phases of N=2 theories in two dimensions, Nucl. Phys. B, Volume 403 (1993), pp. 159-222 | DOI | MR | Zbl
[70.] Algebraic Geometry Associated with Matrix Models of Two-Dimensional Gravity (1991) | MR | Zbl
Cité par Sources :