@article{ASENS_2003_4_36_2_213_0, author = {Abdenur, Flavio}, title = {Generic robustness of spectral decompositions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {213--224}, publisher = {Elsevier}, volume = {Ser. 4, 36}, number = {2}, year = {2003}, doi = {10.1016/S0012-9593(03)00008-9}, mrnumber = {1980311}, zbl = {1027.37010}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S0012-9593(03)00008-9/} }
TY - JOUR AU - Abdenur, Flavio TI - Generic robustness of spectral decompositions JO - Annales scientifiques de l'École Normale Supérieure PY - 2003 SP - 213 EP - 224 VL - 36 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S0012-9593(03)00008-9/ DO - 10.1016/S0012-9593(03)00008-9 LA - en ID - ASENS_2003_4_36_2_213_0 ER -
%0 Journal Article %A Abdenur, Flavio %T Generic robustness of spectral decompositions %J Annales scientifiques de l'École Normale Supérieure %D 2003 %P 213-224 %V 36 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S0012-9593(03)00008-9/ %R 10.1016/S0012-9593(03)00008-9 %G en %F ASENS_2003_4_36_2_213_0
Abdenur, Flavio. Generic robustness of spectral decompositions. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 36 (2003) no. 2, pp. 213-224. doi : 10.1016/S0012-9593(03)00008-9. http://archive.numdam.org/articles/10.1016/S0012-9593(03)00008-9/
[1] Abdenur F., Attractors of generic diffeomorphisms are persistent, preprint IMPA, 2001. | MR
[2] Persistence of transitive diffeomorphisms, Ann. Math. 143 (1995) 367-396. | MR | Zbl
, ,[3] Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Scient. Éc. Norm. Sup. Paris 32 (1999) 135-150. | Numdam | MR | Zbl
, ,[4] Bonatti Ch., Diaz L.J., On maximal transitive sets of generic diffeomorphisms, preprint PUC-Rio, 2001.
[5] Bonatti Ch., Diaz L.J., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math., to appear. | MR | Zbl
[6] Bonatti Ch., Diaz L.J., Pujals E., Rocha J., Robustly transitive sets and heterodimensional cycles, Astérisque, to appear. | Numdam | MR | Zbl
[7] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl
, ,[8] Carballo C.M., Morales C.A., Homoclinic classes and finitude of attractors for vector fields on n-manifolds, preprint, 2001. | MR
[9] Carballo C.M., Morales C.A., Pacifico M.J., Homoclinic classes for generic C1 vector fields, Ergodic Theory Dynam. Systems, to appear. | MR | Zbl
[10] Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl
, , ,[11] Necessary conditions for stability of diffeomorphisms, Trans. AMS 158 (1971) 301-308. | MR | Zbl
,[12] Diffeomorphisms in I1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992) 233-253. | MR | Zbl
,[13] Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl
,[14] General Topology, New York, Springer, 1955. | MR | Zbl
,[15] Contributions to the C1-stability conjecture, Topology 17 (1978) 386-396. | MR | Zbl
,[16] An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | MR | Zbl
,[17] A global view of dynamics and a conjecture on the denseness of finitude of atttractors, Astérisque 261 (2000) 335-347. | Numdam | MR | Zbl
,[18] An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967) 1010-1021. | MR | Zbl
,[19] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis, Ann. Math. 151 (2000) 961-1023. | MR | Zbl
, ,[20] Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, 1993. | MR | Zbl
, ,[21] Global Stability of Dynamical Systems, Springer-Verlag, New York, 1986. | MR | Zbl
,Cited by Sources: