We prove that the only compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows are contracting origin-centered ellipses.
Keywords: Centro-affine normal flow, Affine differential geometry, Affine support function, Ancient solutions
@article{AIHPC_2015__32_6_1189_0, author = {Ivaki, Mohammad N.}, title = {Centro-affine normal flows on curves: {Harnack} estimates and ancient solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1189--1197}, publisher = {Elsevier}, volume = {32}, number = {6}, year = {2015}, doi = {10.1016/j.anihpc.2014.07.001}, mrnumber = {3425259}, zbl = {1329.53096}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.07.001/} }
TY - JOUR AU - Ivaki, Mohammad N. TI - Centro-affine normal flows on curves: Harnack estimates and ancient solutions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 1189 EP - 1197 VL - 32 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.07.001/ DO - 10.1016/j.anihpc.2014.07.001 LA - en ID - AIHPC_2015__32_6_1189_0 ER -
%0 Journal Article %A Ivaki, Mohammad N. %T Centro-affine normal flows on curves: Harnack estimates and ancient solutions %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 1189-1197 %V 32 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.07.001/ %R 10.1016/j.anihpc.2014.07.001 %G en %F AIHPC_2015__32_6_1189_0
Ivaki, Mohammad N. Centro-affine normal flows on curves: Harnack estimates and ancient solutions. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 6, pp. 1189-1197. doi : 10.1016/j.anihpc.2014.07.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.07.001/
[1] Harnack inequalities for evolving hypersurfaces, Math. Z. 217 (1994), 179 -197 | EuDML | MR | Zbl
,[2] Contraction of convex hypersurfaces by their affine normal, J. Differ. Geom. 43 (1996), 207 -230 | MR | Zbl
,[3] Affine curve-lengthening flow, J. Reine Angew. Math. 506 (1999), 43 -83 | MR | Zbl
,[4] Motion of hypersurfaces by Gauss curvature, Pac. J. Math. 195 no. 1 (2000), 1 -34 | MR | Zbl
,[5] Classifying convex compact ancient solutions to the affine curve shortening flow, J. Geom. Anal. (2013), http://dx.doi.org/10.1007/s12220-013-9456-z | MR
,[6] Affine isoperimetric problems, Discrete Geometry and Convexity Ann. N.Y. Acad. Sci. 440 (1985), 113 -127 , http://dx.doi.org/10.1111/j.1749-6632.1985.tb14545.x | MR | Zbl
,[7] Centro-affine curvature flows on centrally symmetric convex curves, Trans. Am. Math. Soc. (2014), arXiv:1205.6456v2 | MR | Zbl
,[8] Volume preserving centro-affine normal flows, Commun. Anal. Geom. 21 (2013), 671 -685 | MR | Zbl
, ,[9] Ancient solutions of the affine normal flow, J. Differ. Geom. 78 (2008), 113 -162 | MR | Zbl
, ,[10] The Brunn–Minkowski–Fiery theory II: affine and geominimal surface areas, Adv. Math. 118 (1996), 244 -294 | MR | Zbl
,[11] On affine plane curve evolution, J. Funct. Anal. 119 (1994), 79 -120 | MR | Zbl
, ,[12] Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. 2012 no. 10 (2012), 2289 -2320 | MR | Zbl
,Cited by Sources: