Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets
ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 3, pp. 869-887.

We consider the problem of minimizing convex combinations of the first two eigenvalues of the Dirichlet–Laplacian among open sets of R N of fixed measure. We show that, by purely elementary arguments, based on the minimality condition, it is possible to obtain informations on the geometry of the minimizers of convex combinations: we study, in particular, when these minimizers are no longer convex, and the optimality of balls. As an application of our results we study the boundary of the attainable set for the Dirichlet spectrum. Our techniques involve symmetry results à la Serrin, explicit constants in quantitative inequalities, as well as a purely geometrical problem: the minimization of the Fraenkel 2-asymmetry among convex sets of fixed measure.

Received:
Accepted:
DOI: 10.1051/cocv/2016017
Classification: 47A75, 49G05, 49Q10, 49R05
Keywords: Eigenvalues, Dirichlet Laplacian, Fraenkel asymmetry, attainable set
Mazzoleni, Dario 1; Zucco, Davide 2, 3

1 Dipartimento di Matematica G. Peano, Università degli Studi di Torino, via Carlo Alberto, 10–10123 Torino, Italy.
2 Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265–34136 Trieste, Italy.
3 Dipartimento di Scienze Matematiche G.L. Lagrange, Politecnico di Torino, Corso Duca degli Abruzzi, 24–10129 Torino, Italy.
@article{COCV_2017__23_3_869_0,
     author = {Mazzoleni, Dario and Zucco, Davide},
     title = {Convex combinations of low eigenvalues, {Fraenkel} asymmetries and attainable sets},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {869--887},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016017},
     mrnumber = {3660452},
     zbl = {1422.47024},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016017/}
}
TY  - JOUR
AU  - Mazzoleni, Dario
AU  - Zucco, Davide
TI  - Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 869
EP  - 887
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016017/
DO  - 10.1051/cocv/2016017
LA  - en
ID  - COCV_2017__23_3_869_0
ER  - 
%0 Journal Article
%A Mazzoleni, Dario
%A Zucco, Davide
%T Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 869-887
%V 23
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016017/
%R 10.1051/cocv/2016017
%G en
%F COCV_2017__23_3_869_0
Mazzoleni, Dario; Zucco, Davide. Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets. ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 3, pp. 869-887. doi : 10.1051/cocv/2016017. http://archive.numdam.org/articles/10.1051/cocv/2016017/

A. Alvino, V. Ferone and C. Nitsch, A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13 (2011) 185–206. | DOI | MR | Zbl

P. Antunes and A. Henrot, On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A 467 (2011) 1577–1603. | MR | Zbl

P. Antunes and A. Henrot, On the range of the first two Dirichlet eigenvalues of the Laplacian with volume and perimeter constraints. Geometry of Solutions of Partial Differential Equations. RIMS Publ. (2013) 1850.

M. Ashbaugh and R. Benguria, Proof of the Payne–Pòlya–Weinberger conjecture. Bull. Amer. Math. Soc. 25 (1991) 19–29. | DOI | MR | Zbl

C. Bianchini, G. Croce and A. Henrot, On the quantitative isoperimentric inequality in the plane. ESAIM: COCV 23 (2017) 517–549. | MR | Zbl

T. Bhattacharya, Some observations on the first eigenvalue of the p-Laplacian and its connections with asymmetry. Electron. J. Differ. Eq. 2001 (2001) 1–15. | MR | Zbl

L. Brasco and A. Pratelli, Sharp stability of some spectral inequalitites. Geom. Funct. Anal. 22 (2012) 107–135. | DOI | MR | Zbl

L. Brasco, G. De Philippis and B. Velichkov, Faber–Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2015) 1777–1831. | DOI | MR | Zbl

L. Brasco, C. Nitsch and A. Pratelli, On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys. 64 (2013) 591–597. | DOI | MR | Zbl

D. Bucur, Minimization of the kth eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206 (2012) 1073–1083. | DOI | MR | Zbl

D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Boston (2005). | MR | Zbl

D. Bucur, G. Buttazzo and I. Figuereido, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527–536. | DOI | MR | Zbl

D. Bucur, G. Buttazzo and A. Henrot, Minimization of λ 2 (Ω) with a perimeter constraint. Indiana Univ. Math. J. 58 (2009) 2709–2728. | DOI | MR | Zbl

D. Bucur, G. Buttazzo and B. Velichkov, Spectral optimization problems with internal constraint. Ann. Inst. Henri Poincaré - Anal. Nonlineaire 30 (2013) 477–495. | DOI | Numdam | MR | Zbl

D. Bucur, D. Mazzoleni, A. Pratelli and B. Velichkov, Lipschitz regularity of the eigenfunctions on optimal domains. Arch. Rational Mech. Anal. 216 (2015) 117–151. | DOI | MR | Zbl

G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183–195. | DOI | MR | Zbl

M. Cicalese and G.P. Leonardi, Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15 (2013) 1101–1129. | DOI | MR | Zbl

G. De Philippis and B Velichkov, Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim. 69 (2014) 199–231. | DOI | MR | Zbl

A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211. | DOI | MR | Zbl

I. Fragalà and F. Gazzola, Partially overdetermined elliptic boundary value problems. J. Differ. Eq. 245 (2008) 1299–1322. | DOI | MR | Zbl

N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | DOI | MR | Zbl

N. Fusco, F. Maggi and A. Pratelli, Stability estimates for certain Faber–Krahn, Isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009) 51–71. | Numdam | MR | Zbl

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). | MR | Zbl

A. Henrot and E. Oudet, Minimizing the second eigenvalue of Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169 (2003) 73–89. | DOI | MR | Zbl

A. Henrot and M. Pierre, Variation et optimisation de formes. Vol. 48 of Mathématiques et Applications. Springer (2005). | MR | Zbl

C.-Y. Kao and B. Osting, Minimal convex combinations of three sequential Laplace-Dirichlet eigenvalues. Appl. Math. Optim. 69 (2014) 123–139. | DOI | MR | Zbl

J.B. Keller and S.A. Wolf, Range of the First Two Eigenvalues of the Laplacian. Proc. Roy. Soc. London Ser. A 447 (1994) 397–412. | DOI | MR | Zbl

M. Iversen and D. Mazzoleni, Minimising convex combinations of low eigenvalues. ESAIM: COCV 20 (2014) 442–459. | Numdam | MR | Zbl

D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl. 100 (2013) 433–453. | DOI | MR | Zbl

E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330. | Numdam | MR | Zbl

J. Serrin, A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl

Cited by Sources: