[Formes normales des perturbations analytiques des champs de vecteurs quasihomogènes : rigidité, ensembles d'invariants analytiques et approximation exponentiellement petite]
Dans cet article, nous étudions des germes de champs de vecteurs holomorphes qui sont des perturbations « d’ordres supérieurs » de champs de vecteurs quasi-homogènes au voisinage de l’origine de
In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of
Keywords: differential equations, small divisors, resonances, normal forms
Mot clés : Équations différentielles, petits diviseurs, résonances, formes normales
@article{ASENS_2010_4_43_4_659_0, author = {Lombardi, Eric and Stolovitch, Laurent}, title = {Normal forms of analytic perturbations of quasihomogeneous vector fields: {Rigidity,} invariant analytic sets and exponentially small approximation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {659--718}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {4}, year = {2010}, doi = {10.24033/asens.2131}, mrnumber = {2722512}, zbl = {1202.37071}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2131/} }
TY - JOUR AU - Lombardi, Eric AU - Stolovitch, Laurent TI - Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 659 EP - 718 VL - 43 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2131/ DO - 10.24033/asens.2131 LA - en ID - ASENS_2010_4_43_4_659_0 ER -
%0 Journal Article %A Lombardi, Eric %A Stolovitch, Laurent %T Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 659-718 %V 43 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2131/ %R 10.24033/asens.2131 %G en %F ASENS_2010_4_43_4_659_0
Lombardi, Eric; Stolovitch, Laurent. Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 4, pp. 659-718. doi : 10.24033/asens.2131. https://www.numdam.org/articles/10.24033/asens.2131/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. | Zbl
,[2] The generalized normal form and the formal equivalence of two-dimensional systems with zero quadratic approximation. III, Differ. Uravn. 42 (2006), 308-319. | MR | Zbl
,[3] Invariant normal forms of formal series, Funct. Anal. Appl. 13 (1979), 46-47. | MR | Zbl
,[4] Normal forms relative to a filtering action of a group, Trans. Moscow Math. Soc. 2 (1981), 1-39. | Zbl
,[5] Local orbital normal forms of vector fields on the plane, Trudy Sem. Petrovsk. 5 (1979), 51-84. | MR | Zbl
,[6] Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603-628. | Numdam | MR | Zbl
& ,[7] Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131-288, 26 (1972), 199-239. | Zbl
,[8] Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595. | MR | Zbl
& ,[9] Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. 13 (2004), 493-513. | Numdam | MR | Zbl
& ,[10] Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, 1967. | MR | Zbl
,
[11] Groupes d’automorphismes de
[12] Nilpotent normal forms and representation theory of
[13] The mixed Cauchy problem for holomorphic partial differential operators, J. Anal. Math. 65 (1995), 237-295. | MR | Zbl
& ,[14] Sur les fonctions résurgentes, t.s I, II, III, Publ. Math. d'Orsay, 1981. | Zbl
,[15] Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164. | Numdam | MR | Zbl
,[16] A simple global characterization for normal forms of singular vector fields, Phys. D 29 (1987), 95-127. | MR | Zbl
, , , & ,[17] Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1-78. | JFM
,[18] Sur les formes normales de champs de vecteurs, Boll. Un. Mat. Ital. A 17 (1980), 60-66. | MR | Zbl
,[19] Lectures on analytic differential equations, Graduate Studies in Math. 86, Amer. Math. Soc., 2008. | MR | Zbl
& ,
[20] Normal forms with exponentially small remainder: application to homoclinic connections for the reversible
[21] Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61. | MR | Zbl
& ,[22] Linear grading function and further reduction of normal forms, J. Differential Equations 132 (1996), 293-318. | MR | Zbl
, & ,[23] Forme normale de perturbation de champs de vecteurs quasi-homogènes, C. R. Math. Acad. Sci. Paris 347 (2009), 143-146. | MR | Zbl
& ,[24] Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations 158 (1999), 152-173. | MR | Zbl
,[25] Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki, vol. 1981/82, exposé no 582, Astérisque 92-93 (1982), 59-73. | Numdam | MR | Zbl
,[26] Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), 1-4. | MR | Zbl
,[27] Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.É.S. 55 (1982), 63-164. | Numdam | MR | Zbl
& ,[28] Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. 16 (1983), 571-621. | Numdam | MR | Zbl
& ,[29] Normal forms and unfoldings for local dynamical systems, Springer Monographs in Math., Springer, 2003. | MR | Zbl
,[30] Formal normal forms for the perturbations of a quasi-homogeneous Hamiltonian vector field, J. Dynam. Control Systems 10 (2004), 545-575. | MR | Zbl
,[31] Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984). | MR | Zbl
,[32] An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513-537. | MR | Zbl
,[33] Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs 82, Amer. Math. Soc., 1990. | MR | Zbl
,[34] Sur les formes normales de systèmes nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 355-358. | MR | Zbl
,[35] Sur un théorème de Dulac, Ann. Inst. Fourier (Grenoble) 44 (1994), 1397-1433. | Numdam | MR | Zbl
,
[36] Classification analytique de champs de vecteurs
[37] Singular complete integrability, Publ. Math. I.H.É.S. 91 (2000), 133-210. | MR | Zbl
,[38] Normal form of holomorphic dynamical systems, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 249-284. | MR | Zbl
,[39] Progress in normal form theory, Nonlinearity 22 (2009), R77-R99. | MR | Zbl
,[40] The analytic and formal normal form for the nilpotent singularity, J. Differential Equations 179 (2002), 479-537. | MR | Zbl
& ,[41] Singularities of vector fields, Publ. Math. I.H.É.S. 43 (1974), 47-100. | Numdam | MR | Zbl
,
[42] Analytic classification of germs of conformal mappings
[43] Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks, Ann. Inst. Fourier (Grenoble) 58 (2008), 263-297. | Numdam | MR | Zbl
& ,Cité par Sources :