On the critical one component regularity for 3-D Navier-Stokes system
[Autour de la régularité d'une composante critique pour le système de Navier-Stokes tridimensionnel]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 131-167.

On considère une donnée initiale v0 dont la vorticité Ω0=×v0 appartient à L32 (ce qui implique que v0 appartient à l'espace de Sobolev H12). Nous démontrons que si la solution v de l'équation de Navier-Stokes tridimensionnelle associée à v0 par le théorème de Fujita-Kato développe une singularité à l'instant T (fini) alors, pour tout p dans l'intervalle ]4,6[ et tout vecteur unitaire e de 3, on a 0Tv(t)·eH12+2ppdt=. Remarquons que toutes ses quantités sont invariantes par les changements d'échelle de l'équation de Navier-Stokes.

Given an initial data v0 with vorticity Ω0=×v0 in L32 (which implies that v0 belongs to the Sobolev space H12), we prove that the solution v given by the classical Fujita-Kato theorem blows up in a finite time T only if, for any p in ]4,6[ and any unit vector e in 3, there holds 0Tv(t)·eH12+2ppdt=. We remark that all these quantities are scaling invariant under the scaling transformation of Navier-Stokes system.

Publié le :
DOI : 10.24033/asens.2278
Classification : 35Q30, 76D03
Keywords: Incompressible Navier-Stokes Equations, Blow-up criteria, Anisotropic, Littlewood-Paley Theory.
Mot clés : Équations de Navier-Stokes incompressibles, critère de l'explosion, théorie de Littlewood-Paley anisotropique.
@article{ASENS_2016__49_1_131_0,
     author = {Chemin, Jean-Yves and Zhang, Ping},
     title = {On the critical one component regularity for {3-D} {Navier-Stokes} system},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {131--167},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {1},
     year = {2016},
     doi = {10.24033/asens.2278},
     mrnumber = {3465978},
     zbl = {1342.35210},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2278/}
}
TY  - JOUR
AU  - Chemin, Jean-Yves
AU  - Zhang, Ping
TI  - On the critical one component regularity for 3-D Navier-Stokes system
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 131
EP  - 167
VL  - 49
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2278/
DO  - 10.24033/asens.2278
LA  - en
ID  - ASENS_2016__49_1_131_0
ER  - 
%0 Journal Article
%A Chemin, Jean-Yves
%A Zhang, Ping
%T On the critical one component regularity for 3-D Navier-Stokes system
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 131-167
%V 49
%N 1
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2278/
%R 10.24033/asens.2278
%G en
%F ASENS_2016__49_1_131_0
Chemin, Jean-Yves; Zhang, Ping. On the critical one component regularity for 3-D Navier-Stokes system. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 131-167. doi : 10.24033/asens.2278. https://www.numdam.org/articles/10.24033/asens.2278/

Beirão da Veiga, H. A new regularity class for the Navier-Stokes equations in 𝐑n , Chinese Ann. Math. Ser. B, Volume 16 (1995), pp. 407-412 ; a Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), 797 (ISSN: 0252-9599) | MR | Zbl

Bahouri, H.; Chemin, J.-Y.; Danchin, R., Grundl. math. Wiss., 343, Springer, Heidelberg, 2011, 523 pages (ISBN: 978-3-642-16829-1) | DOI | MR | Zbl

Beale, J. T.; Kato, T.; Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., Volume 94 (1984), pp. 61-66 http://projecteuclid.org/euclid.cmp/1103941230 (ISSN: 0010-3616) | DOI | MR | Zbl

Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Chemin, J.-Y.; Desjardins, B.; Gallagher, I.; Grenier, E. Fluids with anisotropic viscosity, M2AN Math. Model. Numer. Anal., Volume 34 (2000), pp. 315-335 (ISSN: 0764-583X) | DOI | Numdam | MR | Zbl

Chemin, J.-Y.; Gallagher, I.; Zhang, P. Sums of large global solutions to the incompressible Navier-Stokes equations, J. reine angew. Math., Volume 681 (2013), pp. 65-82 (ISSN: 0075-4102) | MR | Zbl

Chemin, J.-Y. Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992), pp. 20-28 (ISSN: 0036-1410) | DOI | MR | Zbl

Chemin, J.-Y.; Planchon, F. Self-improving bounds for the Navier-Stokes equations, Bull. Soc. Math. France, Volume 140 (2012), pp. 583-597 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl

Cao, C.; Titi, E. S. Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., Volume 57 (2008), pp. 2643-2661 (ISSN: 0022-2518) | DOI | MR | Zbl

Cao, C.; Titi, E. S. Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 919-932 (ISSN: 0003-9527) | DOI | MR | Zbl

Chemin, J.-Y.; Zhang, P. On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, Comm. Math. Phys., Volume 272 (2007), pp. 529-566 (ISSN: 0010-3616) | DOI | MR | Zbl

Fujita, H.; Kato, T. On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 (ISSN: 0003-9527) | DOI | MR | Zbl

Fang, D.; Qian, C. Some new regularity criteria for the 3D Navier-Stokes Equations (preprint arXiv:1212.2335 )

Gallagher, I.; Koch, G. S.; Planchon, F. A profile decomposition approach to the Lt(Lx3) Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 (ISSN: 0025-5831) | DOI | MR | Zbl

He, C. Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differential Equations (2002) (ISSN: 1072-6691) | MR | Zbl

Iskauriaza, L.; Serëgin, G. A.; Shverak, V. L3,-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003), pp. 3-44 (ISSN: 0042-1316) | DOI | MR | Zbl

Kukavica, I.; Ziane, M. One component regularity for the Navier-Stokes equations, Nonlinearity, Volume 19 (2006), pp. 453-469 (ISSN: 0951-7715) | DOI | MR | Zbl

Kukavica, I.; Ziane, M. Navier-Stokes equations with regularity in one direction, J. Math. Phys., Volume 48 (2007) (ISSN: 0022-2488) | DOI | MR | Zbl

Leray, J. Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248 (ISSN: 0001-5962) | DOI | JFM | MR

Neustupa, J.; Novotný, A.; Penel, P., Topics in mathematical fluid mechanics (Quad. Mat.), Volume 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002, pp. 163-183 | MR | Zbl

Neustupa, J.; Penel, P., Applied nonlinear analysis, Kluwer/Plenum, New York, 1999, pp. 391-402 | MR | Zbl

Paicu, M. Équation anisotrope de Navier-Stokes dans des espaces critiques, Rev. Mat. Iberoamericana, Volume 21 (2005), pp. 179-235 (ISSN: 0213-2230) | DOI | MR | Zbl

Pokorný, M. On the result of He concerning the smoothness of solutions to the Navier-Stokes equations, Electron. J. Differential Equations (2003) (ISSN: 1072-6691) | MR | Zbl

Penel, P.; Pokorný, M. Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., Volume 49 (2004), pp. 483-493 (ISSN: 0862-7940) | DOI | MR | Zbl

Skalák, Z.; Kučera, P. A note on coupling of velocity components in the Navier-Stokes equations, ZAMM Z. Angew. Math. Mech., Volume 84 (2004), pp. 124-127 (ISSN: 0044-2267) | DOI | MR | Zbl

Zhou, Y.; Pokorný, M. On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, Volume 23 (2010), pp. 1097-1107 (ISSN: 0951-7715) | DOI | MR | Zbl

  • Han, Bin; Yang, Chibin; Zhao, Na Regularity criteria for the three-dimensional axially symmetric non-resistive incompressible magnetohydrodynamic system, Applicable Analysis, Volume 104 (2025) no. 4, p. 719 | DOI:10.1080/00036811.2024.2381208
  • Koley, Ujjwal; Yamazaki, Kazuo Non-uniqueness in law of transport-diffusion equation forced by random noise, Journal of Differential Equations, Volume 416 (2025), p. 82 | DOI:10.1016/j.jde.2024.09.046
  • Zhao, Lingling On the global regularity to 3D liquid crystal equations involving one entry of the velocity gradient tensor, Journal of Differential Equations, Volume 426 (2025), p. 434 | DOI:10.1016/j.jde.2025.01.075
  • Qian, Chenyin; Su, Shiyi; Zhang, Ting Prodi–Serrin condition for 3D MHD equations via one directional derivative of velocity and magnetic fields, Journal of Differential Equations, Volume 429 (2025), p. 88 | DOI:10.1016/j.jde.2025.02.033
  • Du, Juan; Wu, Fan Extension Criterion to the 3D Navier–Stokes–Cahn–Hilliard equations, Bulletin of the Malaysian Mathematical Sciences Society, Volume 47 (2024) no. 2 | DOI:10.1007/s40840-024-01653-z
  • Han, Bin; Xiong, Xi A Generalized Blow up Criteria with One Component of Velocity for 3D Incompressible MHD System, Chinese Annals of Mathematics, Series B, Volume 45 (2024) no. 2, p. 253 | DOI:10.1007/s11401-024-0015-7
  • Barker, Tobias; Prange, Christophe; Tan, Jin On Symmetry Breaking for the Navier–Stokes Equations, Communications in Mathematical Physics, Volume 405 (2024) no. 2 | DOI:10.1007/s00220-023-04897-1
  • Rahman, Mohammad Mahabubur; Yamazaki, Kazuo Another remark on the global regularity issue of the Hall-magnetohydrodynamics system, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-01000-6
  • Hou, Yingxin; Zhou, Fujun; Xu, Yuan Optimal decay rate and convergence of the incompressible viscous resistive MHD system, Journal of Mathematical Analysis and Applications, Volume 534 (2024) no. 1, p. 128049 | DOI:10.1016/j.jmaa.2023.128049
  • Chen, Qi; Wei, Dongyi; Zhang, Zhifei Transition Threshold for the 3D Couette Flow in a Finite Channel, Memoirs of the American Mathematical Society, Volume 296 (2024) no. 1478 | DOI:10.1090/memo/1478
  • Miller, Evan Finite-time blowup for a Navier–Stokes model equation for the self-amplification of strain, Analysis PDE, Volume 16 (2023) no. 4, p. 997 | DOI:10.2140/apde.2023.16.997
  • Pak, Jisong; Sin, Cholmin; Baranovskii, Evgenii S. Regularity Criterion for 3D Shear-Thinning Fluids via One Component of Velocity, Applied Mathematics Optimization, Volume 88 (2023) no. 2 | DOI:10.1007/s00245-023-10024-2
  • Chen, Zhengmao; Wu, Fan Blow-up criteria of the simplified Ericksen–Leslie system, Boundary Value Problems, Volume 2023 (2023) no. 1 | DOI:10.1186/s13661-023-01729-y
  • Kang, Kyungkeun; Nguyen, Dinh Duong Local Regularity Criteria in Terms of One Velocity Component for the Navier–Stokes Equations, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 1 | DOI:10.1007/s00021-022-00754-8
  • Zhai, Xiaoping; Chen, Yiren; Li, Yongsheng; Zhao, Yongye Optimal well-posedness for the pressureless Euler–Navier–Stokes system, Journal of Mathematical Physics, Volume 64 (2023) no. 5 | DOI:10.1063/5.0136429
  • Agarwal, Ravi P.; Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra ON THE REGULARITY CRITERION ON ONE VELOCITY COMPONENT FOR THE MICROPOLAR FLUID EQUATIONS, Mathematical Modelling and Analysis, Volume 28 (2023) no. 2, p. 271 | DOI:10.3846/mma.2023.15261
  • Jia, Xuanji; Zhou, Yong Regularity criteria for 3D MHD equations via mixed velocity-magnetic gradient tensors, Nonlinearity, Volume 36 (2023) no. 2, p. 1279 | DOI:10.1088/1361-6544/acafcc
  • Chae, Dongho Regularity criterion in terms of the oscillation of pressure for the 3D Navier–Stokes equations, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 3 | DOI:10.1007/s00033-023-01984-0
  • Ri, Myong-Hwan Regularity criteria for 3D Navier–Stokes equations in terms of a mid frequency part of velocity in B˙-1 ∞,∞, Analysis, Volume 42 (2022) no. 1, p. 1 | DOI:10.1515/anly-2020-0050
  • Chen, Hui; Qian, Chenyin; Zhang, Ting Serrin–type regularity criteria for the 3D MHD equations via one velocity component and one magnetic component, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 3 | DOI:10.1007/s00526-022-02208-5
  • Cheskidov, Alexey; Luo, Xiaoyutao Sharp nonuniqueness for the Navier–Stokes equations, Inventiones mathematicae, Volume 229 (2022) no. 3, p. 987 | DOI:10.1007/s00222-022-01116-x
  • Yue, Gaocheng On the well-posedness of 3-D Navier-Stokes-Maxwell system with one slow variable, Journal of Mathematical Analysis and Applications, Volume 507 (2022) no. 1, p. 125747 | DOI:10.1016/j.jmaa.2021.125747
  • Gong, Weihua; Zhou, Fujun; Wu, Weijun; Hu, Qian Optimal decay rate of the two-fluid incompressible Navier–Stokes–Fourier–Poisson system with Ohm’s law, Nonlinear Analysis: Real World Applications, Volume 63 (2022), p. 103392 | DOI:10.1016/j.nonrwa.2021.103392
  • Wu, Fan Global regularity criterion for the dissipative systems modelling electrohydrodynamics involving the middle eigenvalue of the strain tensor, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 152 (2022) no. 5, p. 1277 | DOI:10.1017/prm.2021.56
  • Rahman, Mohammad Mahabubur; Yamazaki, Kazuo Remarks on the global regularity issue of the two-and-a-half-dimensional Hall-magnetohydrodynamics system, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 5 | DOI:10.1007/s00033-022-01853-2
  • Kukavica, I.; Ożański, W.S. An anisotropic regularity condition for the 3D incompressible Navier–Stokes equations for the entire exponent range, Applied Mathematics Letters, Volume 122 (2021), p. 107298 | DOI:10.1016/j.aml.2021.107298
  • Chae, D.; Wolf, J. On the Serrin-Type Condition on One Velocity Component for the Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 240 (2021) no. 3, p. 1323 | DOI:10.1007/s00205-021-01636-5
  • Liu, Yanlin; Zhang, Ping Remark on 3-D Navier-Stokes system with strong dissipation in one direction, Communications on Pure Applied Analysis, Volume 20 (2021) no. 7-8, p. 2765 | DOI:10.3934/cpaa.2020244
  • Houamed, Haroune About some possible blow-up conditions for the 3-D Navier-Stokes equations, Journal of Differential Equations, Volume 275 (2021), p. 116 | DOI:10.1016/j.jde.2020.11.044
  • Chen, Hui; Le, Wenjun; Qian, Chenyin Prodi–Serrin condition for 3D Navier–Stokes equations via one directional derivative of velocity, Journal of Differential Equations, Volume 298 (2021), p. 500 | DOI:10.1016/j.jde.2021.07.015
  • Miller, Evan A survey of geometric constraints on the blowup of solutions of the Navier–Stokes equation, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 589 | DOI:10.1007/s41808-021-00135-8
  • Wu, Fan Fractional Navier–Stokes regularity criterion involving the positive part of the intermediate eigenvalue of the strain matrix, Journal of Mathematical Physics, Volume 62 (2021) no. 10 | DOI:10.1063/5.0043459
  • Chen, Hui; Fang, Daoyuan; Zhang, Ting Critical regularity criteria for Navier–Stokes equations in terms of one directional derivative of the velocity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 6, p. 5123 | DOI:10.1002/mma.7097
  • Wu, Fan Blowup criteria of a dissipative system modeling electrohydrodynamics in sum spaces, Monatshefte für Mathematik, Volume 195 (2021) no. 2, p. 353 | DOI:10.1007/s00605-021-01550-8
  • Giang, N.V.; Khai, D.Q. Some new regularity criteria for the Navier–Stokes equations in terms of one directional derivative of the velocity field, Nonlinear Analysis: Real World Applications, Volume 62 (2021), p. 103379 | DOI:10.1016/j.nonrwa.2021.103379
  • Miller, Evan Global regularity for solutions of the Navier–Stokes equation sufficiently close to being eigenfunctions of the Laplacian, Proceedings of the American Mathematical Society, Series B, Volume 8 (2021) no. 12, p. 129 | DOI:10.1090/bproc/62
  • Miller, Evan A locally anisotropic regularity criterion for the Navier–Stokes equation in terms of vorticity, Proceedings of the American Mathematical Society, Series B, Volume 8 (2021) no. 6, p. 60 | DOI:10.1090/bproc/74
  • Miller, Evan Navier–Stokes regularity criteria in sum spaces, Pure and Applied Analysis, Volume 3 (2021) no. 3, p. 527 | DOI:10.2140/paa.2021.3.527
  • Lévy, Guillaume RETRACTED ARTICLE: A uniqueness lemma with applications to regularization and incompressible fluid mechanics, Science China Mathematics, Volume 64 (2021) no. 4, p. 711 | DOI:10.1007/s11425-018-9477-3
  • Zhang, Zujin; Zhang, Yali On regularity criteria for the Navier–Stokes equations based on one directional derivative of the velocity or one diagonal entry of the velocity gradient, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 1 | DOI:10.1007/s00033-020-01442-1
  • Miller, Evan A Regularity Criterion for the Navier–Stokes Equation Involving Only the Middle Eigenvalue of the Strain Tensor, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 1, p. 99 | DOI:10.1007/s00205-019-01419-z
  • Liu, Yanlin; Zhang, Ping Global Solutions of 3-D Navier–Stokes System with Small Unidirectional Derivative, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 2, p. 1405 | DOI:10.1007/s00205-019-01447-9
  • Liu, Yanlin; Paicu, Marius; Zhang, Ping Global Well-Posedness of 3-D Anisotropic Navier–Stokes System with Small Unidirectional Derivative, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 2, p. 805 | DOI:10.1007/s00205-020-01555-x
  • Li, Te; Wei, Dongyi; Zhang, Zhifei Pseudospectral Bound and Transition Threshold for the 3D Kolmogorov Flow, Communications on Pure and Applied Mathematics, Volume 73 (2020) no. 3, p. 465 | DOI:10.1002/cpa.21863
  • Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra; Yang, J. Q. Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in R3, Computational and Applied Mathematics, Volume 39 (2020) no. 3 | DOI:10.1007/s40314-020-01281-w
  • Han, Bin; Zhao, Na On the critical blow up criterion with one velocity component for 3D incompressible MHD system, Nonlinear Analysis: Real World Applications, Volume 51 (2020), p. 103000 | DOI:10.1016/j.nonrwa.2019.103000
  • Qian, Chenyin The anisotropic regularity criteria for 3D Navier–Stokes equations involving one velocity component, Nonlinear Analysis: Real World Applications, Volume 54 (2020), p. 103094 | DOI:10.1016/j.nonrwa.2020.103094
  • Wang, Yanqing; Wu, Gang; Zhou, Daoguo ε-Regularity criteria in anisotropic Lebesgue spaces and Leray’s self-similar solutions to the 3D Navier–Stokes equations, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 5 | DOI:10.1007/s00033-020-01400-x
  • Bae, Hantaek; Kang, Kyungkeun Regularity condition of the incompressible Navier–Stokes equations in terms of one velocity component, Applied Mathematics Letters, Volume 94 (2019), p. 120 | DOI:10.1016/j.aml.2019.02.024
  • Han, Bin; Lei, Zhen; Li, Dong; Zhao, Na Sharp One Component Regularity for Navier–Stokes, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 2, p. 939 | DOI:10.1007/s00205-018-1292-7
  • Luo, Xiaoyutao Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier–Stokes Equations in High Dimensions, Archive for Rational Mechanics and Analysis, Volume 233 (2019) no. 2, p. 701 | DOI:10.1007/s00205-019-01366-9
  • Wan, Renhui; Jia, Houyu Global well-posedness for the 3D Navier–Sokes equations with a large component of vorticity, Journal of Mathematical Analysis and Applications, Volume 469 (2019) no. 2, p. 504 | DOI:10.1016/j.jmaa.2018.09.023
  • Guo, Zhengguang; Li, Yafei; Skalák, Zdenĕk Regularity Criteria of The Incompressible Navier-Stokes Equations via Only One Entry of Velocity Gradient, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 3 | DOI:10.1007/s00021-019-0441-6
  • Qian, Chenyin The regularity criterion for the 3D Navier–Stokes equations involving end-point Prodi–Serrin type conditions, Applied Mathematics Letters, Volume 75 (2018), p. 37 | DOI:10.1016/j.aml.2017.06.014
  • Seregin, Gregory; Šverák, Vladimir Regularity Criteria for Navier-Stokes Solutions, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 829 | DOI:10.1007/978-3-319-13344-7_16
  • Lévy, Guillaume On an anisotropic Serrin criterion for weak solutions of the Navier–Stokes equations, Journal de Mathématiques Pures et Appliquées, Volume 117 (2018), p. 123 | DOI:10.1016/j.matpur.2018.06.004
  • Chemin, Jean-Yves; Zhang, Ping INHOMOGENEOUS INCOMPRESSIBLE VISCOUS FLOWS WITH SLOWLY VARYING INITIAL DATA, Journal of the Institute of Mathematics of Jussieu, Volume 17 (2018) no. 5, p. 1121 | DOI:10.1017/s1474748016000323
  • Zhang, Zujin Refined regularity criteria for the MHD system involving only two components of the solution, Applicable Analysis, Volume 96 (2017) no. 12, p. 2130 | DOI:10.1080/00036811.2016.1207245
  • Zhang, Zujin; Zhong, Dingxing; Huang, Xiantong A refined regularity criterion for the Navier–Stokes equations involving one non-diagonal entry of the velocity gradient, Journal of Mathematical Analysis and Applications, Volume 453 (2017) no. 2, p. 1145 | DOI:10.1016/j.jmaa.2017.04.049
  • Wang, WenDong; Zhang, ZhiFei Blow-up of critical norms for the 3-D Navier-Stokes equations, Science China Mathematics, Volume 60 (2017) no. 4, p. 637 | DOI:10.1007/s11425-016-0344-5
  • Seregin, Gregory; Šverák, Vladimir Regularity Criteria for Navier-Stokes Solutions, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_16-1
  • KC, Durga; Yamazaki, Kazuo Regularity results on the Leray-alpha magnetohydrodynamics systems, Nonlinear Analysis: Real World Applications, Volume 32 (2016), p. 178 | DOI:10.1016/j.nonrwa.2016.04.006

Cité par 62 documents. Sources : Crossref