On the critical one component regularity for 3-D Navier-Stokes system
[Autour de la régularité d'une composante critique pour le système de Navier-Stokes tridimensionnel]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 131-167.

On considère une donnée initiale v0 dont la vorticité Ω0=×v0 appartient à L32 (ce qui implique que v0 appartient à l'espace de Sobolev H12). Nous démontrons que si la solution v de l'équation de Navier-Stokes tridimensionnelle associée à v0 par le théorème de Fujita-Kato développe une singularité à l'instant T (fini) alors, pour tout p dans l'intervalle ]4,6[ et tout vecteur unitaire e de 3, on a 0Tv(t)·eH12+2ppdt=. Remarquons que toutes ses quantités sont invariantes par les changements d'échelle de l'équation de Navier-Stokes.

Given an initial data v0 with vorticity Ω0=×v0 in L32 (which implies that v0 belongs to the Sobolev space H12), we prove that the solution v given by the classical Fujita-Kato theorem blows up in a finite time T only if, for any p in ]4,6[ and any unit vector e in 3, there holds 0Tv(t)·eH12+2ppdt=. We remark that all these quantities are scaling invariant under the scaling transformation of Navier-Stokes system.

Publié le :
DOI : 10.24033/asens.2278
Classification : 35Q30, 76D03
Keywords: Incompressible Navier-Stokes Equations, Blow-up criteria, Anisotropic, Littlewood-Paley Theory.
Mot clés : Équations de Navier-Stokes incompressibles, critère de l'explosion, théorie de Littlewood-Paley anisotropique.
@article{ASENS_2016__49_1_131_0,
     author = {Chemin, Jean-Yves and Zhang, Ping},
     title = {On the critical one component regularity for {3-D} {Navier-Stokes} system},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {131--167},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {1},
     year = {2016},
     doi = {10.24033/asens.2278},
     mrnumber = {3465978},
     zbl = {1342.35210},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2278/}
}
TY  - JOUR
AU  - Chemin, Jean-Yves
AU  - Zhang, Ping
TI  - On the critical one component regularity for 3-D Navier-Stokes system
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 131
EP  - 167
VL  - 49
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2278/
DO  - 10.24033/asens.2278
LA  - en
ID  - ASENS_2016__49_1_131_0
ER  - 
%0 Journal Article
%A Chemin, Jean-Yves
%A Zhang, Ping
%T On the critical one component regularity for 3-D Navier-Stokes system
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 131-167
%V 49
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2278/
%R 10.24033/asens.2278
%G en
%F ASENS_2016__49_1_131_0
Chemin, Jean-Yves; Zhang, Ping. On the critical one component regularity for 3-D Navier-Stokes system. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 131-167. doi : 10.24033/asens.2278. http://archive.numdam.org/articles/10.24033/asens.2278/

Beirão da Veiga, H. A new regularity class for the Navier-Stokes equations in 𝐑n , Chinese Ann. Math. Ser. B, Volume 16 (1995), pp. 407-412 ; a Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), 797 (ISSN: 0252-9599) | MR | Zbl

Bahouri, H.; Chemin, J.-Y.; Danchin, R., Grundl. math. Wiss., 343, Springer, Heidelberg, 2011, 523 pages (ISBN: 978-3-642-16829-1) | DOI | MR | Zbl

Beale, J. T.; Kato, T.; Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., Volume 94 (1984), pp. 61-66 http://projecteuclid.org/euclid.cmp/1103941230 (ISSN: 0010-3616) | DOI | MR | Zbl

Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Chemin, J.-Y.; Desjardins, B.; Gallagher, I.; Grenier, E. Fluids with anisotropic viscosity, M2AN Math. Model. Numer. Anal., Volume 34 (2000), pp. 315-335 (ISSN: 0764-583X) | DOI | Numdam | MR | Zbl

Chemin, J.-Y.; Gallagher, I.; Zhang, P. Sums of large global solutions to the incompressible Navier-Stokes equations, J. reine angew. Math., Volume 681 (2013), pp. 65-82 (ISSN: 0075-4102) | MR | Zbl

Chemin, J.-Y. Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992), pp. 20-28 (ISSN: 0036-1410) | DOI | MR | Zbl

Chemin, J.-Y.; Planchon, F. Self-improving bounds for the Navier-Stokes equations, Bull. Soc. Math. France, Volume 140 (2012), pp. 583-597 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl

Cao, C.; Titi, E. S. Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., Volume 57 (2008), pp. 2643-2661 (ISSN: 0022-2518) | DOI | MR | Zbl

Cao, C.; Titi, E. S. Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 919-932 (ISSN: 0003-9527) | DOI | MR | Zbl

Chemin, J.-Y.; Zhang, P. On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, Comm. Math. Phys., Volume 272 (2007), pp. 529-566 (ISSN: 0010-3616) | DOI | MR | Zbl

Fujita, H.; Kato, T. On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 (ISSN: 0003-9527) | DOI | MR | Zbl

Fang, D.; Qian, C. Some new regularity criteria for the 3D Navier-Stokes Equations (preprint arXiv:1212.2335 )

Gallagher, I.; Koch, G. S.; Planchon, F. A profile decomposition approach to the Lt(Lx3) Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 (ISSN: 0025-5831) | DOI | MR | Zbl

He, C. Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differential Equations (2002) (ISSN: 1072-6691) | MR | Zbl

Iskauriaza, L.; Serëgin, G. A.; Shverak, V. L3,-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003), pp. 3-44 (ISSN: 0042-1316) | DOI | MR | Zbl

Kukavica, I.; Ziane, M. One component regularity for the Navier-Stokes equations, Nonlinearity, Volume 19 (2006), pp. 453-469 (ISSN: 0951-7715) | DOI | MR | Zbl

Kukavica, I.; Ziane, M. Navier-Stokes equations with regularity in one direction, J. Math. Phys., Volume 48 (2007) (ISSN: 0022-2488) | DOI | MR | Zbl

Leray, J. Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248 (ISSN: 0001-5962) | DOI | JFM | MR

Neustupa, J.; Novotný, A.; Penel, P., Topics in mathematical fluid mechanics (Quad. Mat.), Volume 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002, pp. 163-183 | MR | Zbl

Neustupa, J.; Penel, P., Applied nonlinear analysis, Kluwer/Plenum, New York, 1999, pp. 391-402 | MR | Zbl

Paicu, M. Équation anisotrope de Navier-Stokes dans des espaces critiques, Rev. Mat. Iberoamericana, Volume 21 (2005), pp. 179-235 (ISSN: 0213-2230) | DOI | MR | Zbl

Pokorný, M. On the result of He concerning the smoothness of solutions to the Navier-Stokes equations, Electron. J. Differential Equations (2003) (ISSN: 1072-6691) | MR | Zbl

Penel, P.; Pokorný, M. Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., Volume 49 (2004), pp. 483-493 (ISSN: 0862-7940) | DOI | MR | Zbl

Skalák, Z.; Kučera, P. A note on coupling of velocity components in the Navier-Stokes equations, ZAMM Z. Angew. Math. Mech., Volume 84 (2004), pp. 124-127 (ISSN: 0044-2267) | DOI | MR | Zbl

Zhou, Y.; Pokorný, M. On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, Volume 23 (2010), pp. 1097-1107 (ISSN: 0951-7715) | DOI | MR | Zbl

Cité par Sources :