Cet article établit l'existence des stratifications lipschitziennes au sens de Mostowski pour les ensembles définissables dans une structure o-minimale polynomialement bornée. On améliore aussi le théorème de préparation de L. van den Dries et P. Speissegger.
This paper establishes existence of Lipschitz stratifications in the sense of Mostowski for sets which are definable in a polynomially bounded o-minimal structure. We also improve L. van den Dries and P. Speissegger's preparation theorem for definable functions.
DOI : 10.24033/asens.2286
Keywords: O-minimal-structures, definable sets, polynomially bounded, Lipschitz geometry, stratifications, regularity conditions, equisingularity.
Mot clés : Structures o-minimales, ensembles définissables, polynomialement borné, géométrie lipschitzienne, stratifications, conditions de régularité, équisingularité.
@article{ASENS_2016__49_2_399_0, author = {Nguyen, Nhan and Valette, Guillaume}, title = {Lipschitz stratifications in o-minimal structures}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {399--421}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {2}, year = {2016}, doi = {10.24033/asens.2286}, mrnumber = {3481354}, zbl = {1353.32011}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2286/} }
TY - JOUR AU - Nguyen, Nhan AU - Valette, Guillaume TI - Lipschitz stratifications in o-minimal structures JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 399 EP - 421 VL - 49 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2286/ DO - 10.24033/asens.2286 LA - en ID - ASENS_2016__49_2_399_0 ER -
%0 Journal Article %A Nguyen, Nhan %A Valette, Guillaume %T Lipschitz stratifications in o-minimal structures %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 399-421 %V 49 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2286/ %R 10.24033/asens.2286 %G en %F ASENS_2016__49_2_399_0
Nguyen, Nhan; Valette, Guillaume. Lipschitz stratifications in o-minimal structures. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 2, pp. 399-421. doi : 10.24033/asens.2286. http://archive.numdam.org/articles/10.24033/asens.2286/
, Monografie Matematyczne, 17, Polskie Towarzystwo Matematyczne, Warszawa-Wrocław, 1951 | MR
, Ergebn. Math. Grenzg., 12, Springer, Berlin, 1987, 373 pages (ISBN: 3-540-16951-2) | MR | Zbl
Nature log-analytique du volume des sous-analytiques, Illinois J. Math., Volume 44 (2000), pp. 884-888 http://projecteuclid.org/euclid.ijm/1255984698 (ISSN: 0019-2082) | DOI | MR | Zbl
An introduction to o-minimal geometry (2000)
-adic and real subanalytic sets, Ann. of Math., Volume 128 (1988), pp. 79-138 (ISSN: 0003-486X) | DOI | MR | Zbl
On convergence of integrals in o-minimal structures on Archimedean real closed fields, Ann. Polon. Math., Volume 87 (2005), pp. 175-192 (ISSN: 0066-2216) | DOI | MR | Zbl
A short geometric proof that Hausdorff limits are definable in any o-minimal structure, Adv. Geom., Volume 14 (2014), pp. 49-58 (ISSN: 1615-715X) | DOI | MR | Zbl
, Singularity theory and its applications (Adv. Stud. Pure Math.), Volume 43, Math. Soc. Japan, Tokyo, 2006, pp. 137-177 | DOI | MR | Zbl
, Real algebraic geometry (Rennes, 1991) (Lecture Notes in Math.), Volume 1524, Springer, Berlin, 1992, pp. 316-322 | DOI | MR | Zbl
An o-minimal structure which does not admit cellular decomposition, Ann. Inst. Fourier (Grenoble), Volume 59 (2009), pp. 543-562 http://aif.cedram.org/item?id=AIF_2009__59_2_543_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Singularities and differential equations (Warsaw, 1993) (Banach Center Publ.), Volume 33, Polish Acad. Sci., Warsaw, 1996, pp. 401-409 | MR | Zbl
Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math., Volume 42 (1998), pp. 347-356 http://projecteuclid.org/euclid.ijm/1256045049 (ISSN: 0019-2082) | MR | Zbl
Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier (Grenoble), Volume 47 (1997), pp. 859-884 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Notes on topological stability, Bull. Amer. Math. Soc. (N.S.), Volume 49 (2012), pp. 475-506 (ISSN: 0273-0979) | DOI | MR | Zbl
Expansions of the real field with power functions, Ann. Pure Appl. Logic, Volume 68 (1994), pp. 79-94 (ISSN: 0168-0072) | DOI | MR | Zbl
Lipschitz equisingularity, Dissertationes Math. (Rozprawy Mat.), Volume 243 (1985), 46 pages (ISSN: 0012-3862) | MR | Zbl
, Singularities (Warsaw, 1985) (Banach Center Publ.), Volume 20, PWN, Warsaw, 1988, pp. 323-333 | MR | Zbl
, Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA, 1992), Publish or Perish, Houston, TX, 1993, pp. 73-89 | MR | Zbl
Lipschitz stratification of subanalytic sets, Ann. Sci. École Norm. Sup., Volume 27 (1994), pp. 661-696 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
A linear extension operator for Whitney fields on closed o-minimal sets, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 383-404 http://aif.cedram.org/item?id=AIF_2008__58_2_383_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Lipschitz cell decomposition in o-minimal structures. I, Illinois J. Math., Volume 52 (2008), pp. 1045-1063 http://projecteuclid.org/euclid.ijm/1254403731 (ISSN: 0019-2082) | DOI | MR | Zbl
Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Volume 16 (2003), pp. 751-777 (ISSN: 0894-0347) | DOI | MR | Zbl
Lipschitz triangulations, Illinois J. Math., Volume 49 (2005), pp. 953-979 http://projecteuclid.org/euclid.ijm/1258138230 (ISSN: 0019-2082) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 248, Cambridge Univ. Press, Cambridge, 1998, 180 pages (ISBN: 0-521-59838-9) | DOI | MR | Zbl
, Model theory and applications (Quad. Mat.), Volume 11, Aracne, Rome, 2002, pp. 87-116 | MR | Zbl
Stratifications sous-analytiques. Condition de Verdier, Bull. Polish Acad. Sci. Math., Volume 34 (1986), pp. 531-539 (ISSN: 0239-7269) | MR | Zbl
Cité par Sources :