Global pluripotential theory over a trivially valued field
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 647-836.

We develop global pluripotential theory in the setting of Berkovich geometry over a trivially valued field. Specifically, we define and study functions and measures of finite energy and the non-Archimedean Monge–Ampère operator on any (possibly reducible) projective variety. We also investigate the topology of the space of valuations of linear growth, and the behavior of plurisubharmonic functions thereon.

Nous développons une théorie du pluripotentiel global dans le contexte de la géométrie de Berkovich sur un corps trivialement valué. Plus précisément, nous définissons et étudions des fonctions et mesures d’énergie finie et un opérateur de Monge–Ampère non-archimédien sur toute variéte projective (éventuellement réductible). Nous explorons également la topologie de l’espace des valuations à croissance linéaire, et le comportement des fonctions plurisousharmoniques sur celui-ci.

Published online:
DOI: 10.5802/afst.1705
Boucksom, Sébastien 1; Jonsson, Mattias 2

1 CNRS–CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France
2 Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
@article{AFST_2022_6_31_3_647_0,
     author = {Boucksom, S\'ebastien and Jonsson, Mattias},
     title = {Global pluripotential theory over a trivially valued field},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {647--836},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {3},
     year = {2022},
     doi = {10.5802/afst.1705},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1705/}
}
TY  - JOUR
AU  - Boucksom, Sébastien
AU  - Jonsson, Mattias
TI  - Global pluripotential theory over a trivially valued field
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 647
EP  - 836
VL  - 31
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1705/
DO  - 10.5802/afst.1705
LA  - en
ID  - AFST_2022_6_31_3_647_0
ER  - 
%0 Journal Article
%A Boucksom, Sébastien
%A Jonsson, Mattias
%T Global pluripotential theory over a trivially valued field
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 647-836
%V 31
%N 3
%I Université Paul Sabatier, Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1705/
%R 10.5802/afst.1705
%G en
%F AFST_2022_6_31_3_647_0
Boucksom, Sébastien; Jonsson, Mattias. Global pluripotential theory over a trivially valued field. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 3, pp. 647-836. doi : 10.5802/afst.1705. http://archive.numdam.org/articles/10.5802/afst.1705/

[1] Alexander, Herbert J.; Taylor, Bert A. Comparison of two capacities in C n , Math. Z., Volume 186 (1984), pp. 407-417 | DOI | MR | Zbl

[2] Alper, Jarod; Blum, Harold; Halpern-Leistner, Daniel; Xu, Chenyang Reductivity of the automorphism group of K-polystable Fano varieties, Invent. Math., Volume 222 (2020) no. 23, pp. 995-1032 | DOI | MR | Zbl

[3] Baker, Matthew; Rumely, Robert Potential theory on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010 | DOI

[4] Bedford, Eric Envelopes of continuous, plurisubharmonic functions, Math. Ann., Volume 251 (1980), pp. 175-183 | DOI | MR | Zbl

[5] Bedford, Eric; Taylor, Bert A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl

[6] Bedford, Eric; Taylor, Bert A. Fine topology, Šilov boundary and (dd c ) n , J. Funct. Anal., Volume 72 (1987), pp. 225-251 | DOI | Zbl

[7] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR

[8] Berkovich, Vladimir G. Smooth p-adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl

[9] Berman, Robert J. Statistical mechanics of permanents, real Monge–Ampère equations and optimal transport (2013) | arXiv

[10] Berman, Robert J.; Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 27-89 | DOI | Zbl

[11] Berman, Robert J.; Boucksom, Sébastien; Guedj, Vincent; Zeriahi, Ahmed A variational approach to complex Monge–Ampère equations, Publ. Math., Volume 117 (2013), pp. 179-245 | DOI | Numdam | Zbl

[12] Berman, Robert J.; Boucksom, Sébastien; Jonsson, Mattias A variational approach to the Yau–Tian–Donaldson conjecture, J. Am. Math. Soc., Volume 34 (2021) no. 3, pp. 605-652 | DOI | MR | Zbl

[13] Bloch, Spencer; Gillet, Henri; Soulé, Christophe Non-Archimedean Arakelov Geometry, J. Algebr. Geom., Volume 4 (1995) no. 3, pp. 427-485

[14] Błocki, Zbigniew; Kołodziej, Sławomir On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., Volume 135 (2007) no. 7, pp. 2089-2093 | DOI | MR | Zbl

[15] Blum, Harold; Halpern-Leistner, Daniel; Liu, Yuchen; Xu, Chenyang On properness of K-moduli spaces and optimal degenerations of Fano varieties, Sel. Math., New Ser., Volume 27 (2021) no. 4, 73, 39 pages | MR | Zbl

[16] Blum, Harold; Jonsson, Mattias Thresholds, valuations, and K-stability, Adv. Math., Volume 365 (2020), 107062, 57 pages | MR | Zbl

[17] Blum, Harold; Liu, Yuchen; Xu, Chenyang Openness of K-semistability for Fano varieties (2019) (to appear in Duke Math. J.) | arXiv

[18] Blum, Harold; Liu, Yuchen; Zhou, Chuyu Optimal destabilization of K-unstable Fano varieties via stability thresholds (1907) (to appear in Geom. Topol.) | arXiv

[19] Blum, Harold; Xu, Chenyang Uniqueness of K-polystable degenerations of Fano varieties, Ann. Math., Volume 190 (2019) no. 2, pp. 609-656 | MR | Zbl

[20] Boucksom, Sébastien Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[21] Boucksom, Sébastien; De Fernex, Tommaso; Favre, Charles The volume of an isolated singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1520 | MR | Zbl

[22] Boucksom, Sébastien; Eriksson, Dennis Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 125 pages | MR | Zbl

[23] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl

[24] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 449-494 | DOI | MR | Zbl

[25] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl

[26] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Solution to a non-Archimedean Monge–Ampère equation, J. Am. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | DOI | Zbl

[27] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Singular semipositive metrics in non-Archimedean geometry, J. Algebr. Geom., Volume 25 (2016) no. 1, pp. 77-139 | DOI | MR | Zbl

[28] Boucksom, Sébastien; Gubler, Walter; Martin, Florent Differentiability of relative volumes over an arbitrary non-Archimedean field, Int. Math. Res. Not., Volume 2022 (2022) no. 8, pp. 6214-6242 | DOI | MR | Zbl

[29] Boucksom, Sébastien; Hisamoto, Tomoyuki; Jonsson, Mattias Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs, Ann. Inst. Fourier, Volume 67 (2017) no. 2, pp. 743-841 | DOI | Numdam | MR | Zbl

[30] Boucksom, Sébastien; Hisamoto, Tomoyuki; Jonsson, Mattias Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2905-2944 | DOI | Zbl

[31] Boucksom, Sébastien; Jonsson, Mattias Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl

[32] Boucksom, Sébastien; Jonsson, Mattias A non-Archimedean approach to K-stability (2018) | arXiv

[33] Boucksom, Sébastien; Jonsson, Mattias Singular semipositive metrics on line bundles on varieties over trivially valued fields (2018) | arXiv

[34] Boucksom, Sébastien; Jonsson, Mattias A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations (2021) | arXiv

[35] Boucksom, Sébastien; Jonsson, Mattias A non-Archimedean approach to K-stability, II: divisorial stability and openness (in preparation)

[36] Boucksom, Sébastien; Küronya, Alex; Maclean, Catriona; Szemberg, Tomasz Vanishing sequences and Okounkov bodies, Math. Ann., Volume 361 (2015) no. 3-4, pp. 811-834 | DOI | MR | Zbl

[37] Burgos Gil, José Ignacio; Gubler, Walter; Jell, Philipp; Künnemann, Klaus; Martin, Florent Differentiability of non-archimedean volumes and non-archimedean Monge–Ampère equations (with an appendix by Robert Lazarsfeld), Algebr. Geom., Volume 7 (2020) no. 2, pp. 113-152 | Zbl

[38] Burgos Gil, José Ignacio; Philippon, Patrice; Sombra, Martín Arithmetic geometry of toric varieties. Metrics, measures, and heights, Astérisque, 360, Société Mathématique de France, 2014

[39] Chambert-Loir, Antoine Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl

[40] Chambert-Loir, Antoine; Ducros, Antoine Formes différentielles réelles et courants sur les espaces de Berkovich (2012) | arXiv

[41] Chambert-Loir, Antoine; Thuillier, Amaury Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier, Volume 59 (2009) no. 3, pp. 977-1014 | DOI | Numdam | Zbl

[42] Chen, Huayi; Maclean, Catriona Distribution of logarithmic spectra of the equilibrium energy, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 365-394 | DOI | MR | Zbl

[43] Dang, Nguyen-Bac; Favre, Charles Intersection theory of nef b-divisor classes (2020) | arXiv

[44] Darvas, Tamás The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182-219 | DOI | MR | Zbl

[45] Darvas, Tamás; Di Nezza, Eleonora; Lu, Chinh H. L 1 metric geometry of big cohomology classes, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 3053-3086 | DOI | Numdam | MR | Zbl

[46] Demailly, Jean-Pierre Complex analytic and differential geometry (book available at the author’s web page http://www-fourier.ujf-grenoble.fr/~demailly/documents.html)

[47] Demailly, Jean-Pierre Mesures de Monge–Ampère et caractérisation géométrique des varétés algébriques affines, Mém. Soc. Math. Fr., Nouv. Sér., Volume 19 (1985), pp. 1-125 | Zbl

[48] Demailly, Jean-Pierre Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl

[49] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl

[50] Dervan, Ruadhaí; Ross, Julius K-stability for Kähler manifolds, Math. Res. Lett., Volume 24 (2017) no. 3, pp. 689-739 | DOI | Zbl

[51] Dervan, Ruadhaí; Székelyhidi, Gábor The Kähler–Ricci flow and optimal degenerations, J. Differ. Geom., Volume 116 (2020) no. 1, pp. 187-203 | Zbl

[52] Di Nezza, Eleonora Finite pluricomplex energy measures, Potential Anal., Volume 44 (2016) no. 1, pp. 155-167 | DOI | MR | Zbl

[53] Donaldson, Simon K. Scalar curvature and stability of toric varieties, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 289-349 | MR | Zbl

[54] Ducros, Antoine Les espaces de Berkovich sont excellents, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1443-1552 | DOI | Numdam | MR | Zbl

[55] Ein, Lawrence; Lazarsfeld, Robert; Smith, Karen E. Uniform approximation of Abhyankar valuation ideals in smooth function fields, Am. J. Math., Volume 125 (2003) no. 2, pp. 409-440 | MR | Zbl

[56] Favre, Charles; Jonsson, Mattias The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004 | DOI

[57] Favre, Charles; Jonsson, Mattias Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | DOI | MR | Zbl

[58] Favre, Charles; Jonsson, Mattias Valuative analysis of planar plurisubharmonic functions, Invent. Math., Volume 162 (2005) no. 2, pp. 271-311 | DOI | MR | Zbl

[59] Favre, Charles; Jonsson, Mattias Eigenvaluations, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 2, pp. 309-349 | DOI | Numdam | MR | Zbl

[60] Favre, Charles; Jonsson, Mattias Dynamical compactifications of 2 , Ann. Math., Volume 173 (2011) no. 1, pp. 211-249 | DOI | MR | Zbl

[61] Folland, Gerald B. Real analysis: modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999

[62] Fujita, Kento On K-stability and the volume functions of -Fano varieties, Proc. Lond. Math. Soc., Volume 113 (2016) no. 5, pp. 1-42 | Numdam | MR | Zbl

[63] Fujita, Kento A valuative criterion for uniform K-stability of -Fano varieties, J. Reine Angew. Math., Volume 751 (2019), pp. 309-358 | DOI | MR | Zbl

[64] Fujita, Kento; Odaka, Yuji On the K-stability of Fano varieties and anticanonical divisors, Tôhoku Math. J., Volume 70 (2018) no. 4, pp. 511-521 | MR | Zbl

[65] Fulton, William Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 | DOI

[66] Fulton, William Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998 | DOI

[67] Goodman, Jacob E. Affine open subsets of algebraic varieties and ample divisors, Ann. Math., Volume 89 (1969), pp. 160-183 | DOI | MR | Zbl

[68] Grothendieck, Alexander Éléments de géométrie algébrique I-IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) (partie IV rédigée avec la colloboration de Jean Dieudonné) | Zbl

[69] Gubler, Walter Local heights of irreducible subvarieties over non-Archimedean fields, J. Reine Angew. Math., Volume 498 (1998), pp. 61-113 | DOI | Zbl

[70] Gubler, Walter Equidistribution over function fields, Manuscr. Math., Volume 127 (2008) no. 4, pp. 485-510 | DOI | MR | Zbl

[71] Gubler, Walter Non-archimedean canonical measures on abelian varieties, Compos. Math., Volume 146 (2010) no. 3, pp. 643-730 | MR | Zbl

[72] Gubler, Walter; Jell, Philipp; Künnemann, Klaus; Martin, Florent Continuity of plurisubharmonic envelopes in non-Archimedean geometry and test ideals (with an appendix by José Ignacio Burgos Gil and Martín Sombra), Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2331-2376 | DOI | Numdam | Zbl

[73] Gubler, Walter; Künnemann, Klaus A tropical approach to non-archimedean Arakelov theory, Algebra Number Theory, Volume 11 (2017) no. 1, pp. 77-180 | DOI | Zbl

[74] Gubler, Walter; Martin, Florent On Zhang’s semipositive metrics, Doc. Math., Volume 24 (2019), pp. 331-372 | MR | Zbl

[75] Guedj, Vincent; Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | DOI | Zbl

[76] Guedj, Vincent; Zeriahi, Ahmed The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl

[77] Guedj, Vincent; Zeriahi, Ahmed Degenerate Monge–Ampère equations, EMS Tracts in Mathematics, 26, European Mathematical Society, 2017 | DOI

[78] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI

[79] Jonsson, Mattias Dynamics on Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | MR | Zbl

[80] Jonsson, Mattias; Mustaţă, Mircea Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012) no. 6, pp. 2145-2209 | DOI | Numdam | MR | Zbl

[81] Kollár, János Variants of normality for Noetherian schemes, Pure Appl. Math. Q., Volume 12 (2016) no. 1, pp. 1-31 | DOI | MR | Zbl

[82] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 | DOI

[83] Kołodziej, Sławomir The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl

[84] Kontsevich, M.; Tschinkel, Y. Non-Archimedean Kähler geometry (unpublished)

[85] Lazarsfeld, Robert Positivity in algebraic geometry. I-II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, 49, Springer, 2004

[86] Lemmens, Bas; Nussbaum, Roger Nonlinear Perron-Frobenius theory, Cambridge Tracts in Mathematics, 189, 2012 | DOI

[87] Li, Chi K-semistability is equivariant volume minimization, Duke Math. J., Volume 166 (2017) no. 16, pp. 3147-3218 | MR | Zbl

[88] Li, Chi Minimizing normalized volumes of valuations, Math. Z., Volume 289 (2018) no. 1-2, pp. 491-513 | MR | Zbl

[89] Li, Chi G-uniform stability and Kähler-Einstein metrics on Fano varieties (2019) (to appear in Invent. Math.) | arXiv

[90] Li, Chi Geodesic rays and stability in the cscK problem (2020) (to appear in Ann. Sci. Éc. Norm. Supér.) | arXiv

[91] Li, Chi; Tian, Gang; Wang, Feng The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties (2019) | arXiv

[92] Liu, Yifeng A non-Archimedean analogue of Calabi-Yau theorem for totally degenerate abelian varieties, J. Differ. Geom., Volume 89 (2011) no. 1, pp. 87-110 | MR | Zbl

[93] Liu, Yuchen; Xu, Chenyang; Zhuang, Ziquan Finite generation for valuations computing stability thresholds and applications to K-stability (2021) | arXiv

[94] Nakayama, Noboru Zariski decompositions and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004

[95] Odaka, Yuji A generalization of the Ross-Thomas slope theory, Osaka J. Math., Volume 50 (2013) no. 1, pp. 171-185 | MR | Zbl

[96] Odaka, Yuji On parametrization, optimization and triviality of test configurations, Proc. Am. Math. Soc., Volume 143 (2015) no. 1, pp. 25-33 | DOI | MR | Zbl

[97] Poineau, Jérôme Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | Zbl

[98] Reboulet, Rémi Plurisubharmonic geodesics in spaces of non-Archimedean metrics of finite energy (2020) | arXiv

[99] Reboulet, Rémi The asymptotic Fubini-Study operator over general non-Archimedean fields, Math. Z., Volume 299 (2021) no. 3-4, pp. 2341-2378 | DOI | MR | Zbl

[100] Ross, Julius; Nyström, David Witt Analytic test configurations and geodesic rays, J. Symplectic Geom., Volume 12 (2014) no. 1, pp. 125-169 | DOI | MR | Zbl

[101] Shivaprasad, Sanal Convergence of volume forms on a family of log-Calabi-Yau varieties to a non-Archimedean measure (2019) | arXiv

[102] Sjöström Dyrefelt, Zakarias K-semistability of cscK manifolds with transcendental cohomology class, J. Geom. Anal., Volume 28 (2018) no. 4, pp. 2927-2960 | DOI | MR | Zbl

[103] Stacks Project Authors Stacks Project (http://stacks.math.columbia.edu)

[104] Stoppa, Jacopo A note on the definition of K-stability (2011) | arXiv

[105] Thompson, Anthony C. On certain contraction mappings in a partially ordered vector space, Proc. Am. Math. Soc., Volume 14 (1963), pp. 438-443 | MR | Zbl

[106] Thuillier, Amaury Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications á la théorie d’Arakelov, Ph. D. Thesis, Université de Rennes I (France) (2005) (available at http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf)

[107] Xu, Chenyang; Zhuang, Ziquan On positivity of the CM line bundle on K-moduli spaces, Ann. Math., Volume 192 (2020) no. 3, pp. 1005-1068 | MR | Zbl

[108] Yau, Shing-Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl

[109] Yuan, Xinyi; Zhang, Shouwu The arithmetic Hodge Theorem for adelic line bundles, Math. Ann., Volume 367 (2017) no. 3-4, pp. 1123-1171 | DOI | MR | Zbl

[110] Zhang, Shouwu Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl

Cited by Sources: