Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres
Annales de l'Institut Fourier, Volume 47 (1997) no. 2, pp. 429-483.

We consider the Dirichlet series sZ(P;s)= m *n P(m) -s (s) where P[X 1 ,...,X n ]. We will say that Z(P;s) exists if this multiple series is absolutely convergent. In this paper we study meromorphic continuations of such series, under the assumptions that there exists a constant B]0,1[ such that: i) P(x)+ when ||x||+ and x[B,+[ n and ii) d(Z(P),[B,+[ n )>0 where Z(P)={z n |P(z)=0}. This assumption is probably optimal, and in any way strictly includes all classes of polynomials previously treated. Under this assumption, we prove the existence of meromorphic continuation of Dirichlet series, we give a set of candidate poles and an upper bound to the orders of these poles. Moreover we obtain bounds for these meromorphic continuation on vertical bands. As an application, we show the existence of a finite asymptotic expansion of the counting function: N P (t)=#{m *n |P(m)t} when t+

Soit P[X 1 ,...,X n ] un polynôme. On appelle série de Dirichlet associée à P la fonction : sZ(P;s)= m *n P(m) -s (s). Dans cet article nous étudions l’existence et les propriétés du prolongement méromorphe d’une telle série sous l’hypothèse qu’il existe B]0,1[ tel que : i) P(x)+ quand ||x||+ et x[B,+[ n et ii) d(Z(P),[B,+[ n )>0Z(P)={z n |P(z)=0}. Cette hypothèse est probablement optimale et en tout cas contient strictement toutes les classes de polynômes déjà traitées antérieurement. Sous cette hypothèse nos principaux résultats sont : l’existence du prolongement méromorphe au plan complexe de la série de Dirichlet, la caractérisation d’un ensemble de candidats pôles, la majoration de leurs ordres par la dimension n et l’obtention de majoration du prolongement méromorphe sur les bandes verticales de . Comme application nous montrons l’existence d’un développement asymptotique limité de la fonction de comptage N P (t)=#{m *n |P(m)t} quand t+.

@article{AIF_1997__47_2_429_0,
     author = {Essouabri, Driss},
     title = {Singularit\'e de s\'eries de {Dirichlet} associ\'ees \`a des polyn\^omes de plusieurs variables et applications en th\'eorie analytique des nombres},
     journal = {Annales de l'Institut Fourier},
     pages = {429--483},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {2},
     year = {1997},
     doi = {10.5802/aif.1570},
     mrnumber = {99d:11098},
     zbl = {0882.11051},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.1570/}
}
TY  - JOUR
AU  - Essouabri, Driss
TI  - Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 429
EP  - 483
VL  - 47
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1570/
DO  - 10.5802/aif.1570
LA  - fr
ID  - AIF_1997__47_2_429_0
ER  - 
%0 Journal Article
%A Essouabri, Driss
%T Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres
%J Annales de l'Institut Fourier
%D 1997
%P 429-483
%V 47
%N 2
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1570/
%R 10.5802/aif.1570
%G fr
%F AIF_1997__47_2_429_0
Essouabri, Driss. Singularité de séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres. Annales de l'Institut Fourier, Volume 47 (1997) no. 2, pp. 429-483. doi : 10.5802/aif.1570. http://archive.numdam.org/articles/10.5802/aif.1570/

[1] M.F. Atiyah, Resolutions of singularities and division of distributions, Com. Pure and Applied Mathematics, XXIII (1970), 145-150. | MR | Zbl

[2] P. Cassou-Noguès, Applications arithmétiques de l'étude des valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme, Ann. Inst. Fourier, 31-4 (1981), 1-36. | Numdam | MR | Zbl

[3] P. Cassou-Noguès, Séries de Dirichlet, Journées Arithmétiques de Metz, Astérisque, 94 (1982), 1-15. | Numdam | Zbl

[4] P. Cassou-Noguès, Prolongement des séries de Dirichlet associées à un polynôme à deux indéterminées, J. Number Theory, 23 (1986), 1-54. | MR | Zbl

[5] M. Coste, Ensembles semi-algébriques, géométrie algébrique réelle et formes quadratiques, in "Proceedings, Rennes, 1981", Lecture Notes in Math., 959, Springer-Verlag, Berlin-Heidelberg-New York, 1982, 109-138. | MR | Zbl

[6] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), 109-326. | MR | Zbl

[7] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin-Heidelberg-New York. | Zbl

[8] B. Lichtin, Generalized Dirichlet series and B-functions, Compositio Math., 65 (1988), 81-120. | Numdam | MR | Zbl

[9] B. Lichtin, Volumes and lattice points. Proof of a conjecture of L. Ehrenpreis, in "Singularities", London Mathem. Soc., Lecture Notes, 201, Cambridge University Press, Cambridge, 1994. | Zbl

[10] B. Lichtin, Asymptotics of a lattice point problem determined by finitely many polynomials II, à paraître. | Zbl

[11] K. Mahler, Über einer Satz von Mellin, Mathematische Annalen, 100 (1928), 384-395. | JFM

[12] R.H. Mellin, Acta Soc. Scient. Fennicae, 29, 4 (1900).

[13] K.F Roth, Rational approximation to algebraic numbers, Mathematica, 2 (1955), 1-20 (with corrigendium p. 168). | MR | Zbl

[14] P. Sargos, Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables, Ann. Institut Fourier, 34-3 (1984), 83-123. | Numdam | MR | Zbl

[15] P. Sargos, Séries de Dirichlet associées à des polynômes de plusieurs variables, thèse d'Etat, Université de Bordeaux I, 1987.

[16] P. Sargos, Croissance de certaines séries de Dirichlet et applications, J. reine angew. Math., 367 (1986), 139-154. | MR | Zbl

[17] E.C. Titchmarsh, The theory of the riemann zeta function, Oxford University Press, Oxford, 1951. | MR | Zbl

[18] A. Yger, Formules de division et prolongements méromorphes, Séminaire d'analyse (P. Lelong-P. Dolbeault-H. Skoda), Lecture Notes in Math., 1295, Springer-Verlag, Berlin-Heidelberg-New York, 1988.

[19] B.M. Van Der Wærden, Einführung in die algebraische Geometrie, Berlin Verlag von Julius Springer, 1939. | Zbl

[20] R.J. Walker, Algebraic curves, Princeton University Press, 1950. | MR | Zbl

Cited by Sources: