Strong diamagnetism for general domains and application
[Diamagnétisme fort pour des domaines généraux et applications]
Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2389-2400.

Nous considérons le Laplacien de Neumann avec champ magnétique constant dans un domaine régulier de 2 . Si B désigne l’intensité de ce champ et si λ 1 (B) désigne la première valeur propre de ce Laplacien, il est démontré que λ 1 est une fonction monotone croissante de B pour B grand. En combinant avec des résultats antérieurs des auteurs, ceci implique la coïncidence de toutes les définitions raisonables du troisième champ critique pour les matériaux supraconducteurs de type II.

We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 (B) be the first eigenvalue of this Laplacian. It is proved that Bλ 1 (B) is monotone increasing for large B. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

DOI : https://doi.org/10.5802/aif.2337
Classification : 35P15,  35J55,  82D55
Mots clés : théorie spectrale, bas du spectre, condition de Neumann, supraconductivité
@article{AIF_2007__57_7_2389_0,
     author = {Fournais, Soeren and Helffer, Bernard},
     title = {Strong diamagnetism for general domains and application},
     journal = {Annales de l'Institut Fourier},
     pages = {2389--2400},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {7},
     year = {2007},
     doi = {10.5802/aif.2337},
     mrnumber = {2394546},
     zbl = {1133.35073},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2337/}
}
TY  - JOUR
AU  - Fournais, Soeren
AU  - Helffer, Bernard
TI  - Strong diamagnetism for general domains and application
JO  - Annales de l'Institut Fourier
PY  - 2007
DA  - 2007///
SP  - 2389
EP  - 2400
VL  - 57
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2337/
UR  - https://www.ams.org/mathscinet-getitem?mr=2394546
UR  - https://zbmath.org/?q=an%3A1133.35073
UR  - https://doi.org/10.5802/aif.2337
DO  - 10.5802/aif.2337
LA  - en
ID  - AIF_2007__57_7_2389_0
ER  - 
Fournais, Soeren; Helffer, Bernard. Strong diamagnetism for general domains and application. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2389-2400. doi : 10.5802/aif.2337. http://archive.numdam.org/articles/10.5802/aif.2337/

[1] Agmon, Shmuel Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators, Mathematical Notes, 29, Princeton University Press, Princeton, NJ, 1982 | MR 745286 | Zbl 0503.35001

[2] Bauman, P.; Phillips, D.; Tang, Q. Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., Volume 142 (1998) no. 1, pp. 1-43 | Article | MR 1629119 | Zbl 0922.35157

[3] Bernoff, Andrew; Sternberg, Peter Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Volume 39 (1998) no. 3, pp. 1272-1284 | Article | MR 1608449 | Zbl 1056.82523

[4] Bonnaillie, Virginie On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners, Asymptotic Anal, Volume 41 (2005) no. 3-4, pp. 215-258 | MR 2127997 | Zbl 1067.35054

[5] Bonnaillie-Noël, Virginie; Dauge, Monique Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Volume 7 (2006) no. 5, pp. 899-931 | Article | MR 2254755 | Zbl 1134.81021

[6] Bonnaillie-Noël, Virginie; Soeren, Fournais Superconductivity in domains with corners (In preparation)

[7] Erdős, László Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys., Volume 38 (1997) no. 3, pp. 1289-1317 | Article | MR 1435670 | Zbl 0875.81047

[8] Erdős, László Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 6, pp. 1833-1874 | Article | Numdam | MR 1954326 | Zbl 1106.35039

[9] Fournais, S.; Helffer, B. On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys., Volume 266 (2006) no. 1, pp. 153-196 | Article | MR 2231969 | Zbl 1107.58009

[10] Giorgi, T.; Phillips, D. The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Rev., Volume 44 (2002) no. 2, p. 237-256 (electronic) Reprinted from SIAM J. Math. Anal. 30 (1999), no. 2, 341–359 [MR 2002b:35235] | Article | MR 1926099 | Zbl 1094.82021

[11] Helffer, Bernard; Morame, Abderemane Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | Article | MR 1856278 | Zbl 1078.81023

[12] Helffer, Bernard; Pan, Xing-Bin Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003) no. 1, pp. 145-181 | Article | EuDML 78571 | Numdam | MR 1958165 | Zbl 1060.35132

[13] Loss, Michael; Thaller, Bernd Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Comm. Math. Phys., Volume 186 (1997) no. 1, pp. 95-107 | Article | MR 1462758 | Zbl 0873.35078

[14] Lu, Kening; Pan, Xing-Bin Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., Volume 40 (1999) no. 6, pp. 2647-2670 | Article | MR 1694223 | Zbl 0943.35058

[15] Lu, Kening; Pan, Xing-Bin Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D, Volume 127 (1999) no. 1-2, pp. 73-104 | Article | MR 1678383 | Zbl 0934.35174

[16] Lu, Kening; Pan, Xing-Bin Gauge invariant eigenvalue problems in R 2 and in R + 2 , Trans. Amer. Math. Soc., Volume 352 (2000) no. 3, pp. 1247-1276 | Article | MR 1675206 | Zbl 1053.35124

[17] Pan, Xing-Bin Superconductivity near critical temperature, J. Math. Phys., Volume 44 (2003) no. 6, pp. 2639-2678 | Article | MR 1979105 | Zbl 1062.82057

[18] del Pino, Manuel; Felmer, Patricio L.; Sternberg, Peter Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Volume 210 (2000) no. 2, pp. 413-446 | Article | MR 1776839 | Zbl 0982.35077

[19] Soeren, Fournais; Helffer, Bernard Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 | Article | EuDML 10139 | Numdam | MR 2228679 | Zbl 1097.47020

Cité par Sources :