Spectral theta series of operators with periodic bicharacteristic flow
[Série thêta spectrale d’opérateurs dont le flot bicaractéristique est périodique]
Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2401-2427.

La série thêta ϑ(z)=exp(2πin 2 z) est un exemple classique de forme modulaire. Dans cet article, nous montrons que la trace ϑ P (z)=Trexp(2πiP 2 z), où P est un opérateur pseudo-différentiel elliptique auto-adjoint d’ordre 1 à flot bicaractéristique périodique, en est une généralisation naturelle. En particulier, nous établissons des égalités fonctionnelles approchées sous l’action du groupe modulaire. Ceci permet une analyse détaillée de l’asymptotique de ϑ P (z) au voisinage de l’axe réel, et prouve des lois du logarithme et des théorèmes limites pour la distribution de ses valeurs. Ces asymptotiques diffèrent de celles relatives à la trace de l’opérateur des ondes Trexp(-iPt), dont les singularités sont portées par les longueurs des bicaractéristiques périodiques.

The theta series ϑ(z)=exp(2πin 2 z) is a classical example of a modular form. In this article we argue that the trace ϑ P (z)=Trexp(2πiP 2 z), where P is a self-adjoint elliptic pseudo-differential operator of order 1 with periodic bicharacteristic flow, may be viewed as a natural generalization. In particular, we establish approximate functional relations under the action of the modular group. This allows a detailed analysis of the asymptotics of ϑ P (z) near the real axis, and the proof of logarithm laws and limit theorems for its value distribution. These asymptotics are in fact distinctly different from those for the ‘wave trace’ Trexp(-iPt) whose singularities are well known to be located at the lengths of the periodic orbits of the bicharacteristic flow.

DOI : https://doi.org/10.5802/aif.2338
Classification : 35P20,  11F72,  37D40
Mots clés : série théta spectrale, variété de Zoll, flot géodésique périodique, représentation de Shale-Weil, flot horocyclique, lois du logarithme
@article{AIF_2007__57_7_2401_0,
     author = {Marklof, Jens},
     title = {Spectral theta series of operators with periodic bicharacteristic flow},
     journal = {Annales de l'Institut Fourier},
     pages = {2401--2427},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {7},
     year = {2007},
     doi = {10.5802/aif.2338},
     mrnumber = {2394547},
     zbl = {1133.35075},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2338/}
}
TY  - JOUR
AU  - Marklof, Jens
TI  - Spectral theta series of operators with periodic bicharacteristic flow
JO  - Annales de l'Institut Fourier
PY  - 2007
DA  - 2007///
SP  - 2401
EP  - 2427
VL  - 57
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2338/
UR  - https://www.ams.org/mathscinet-getitem?mr=2394547
UR  - https://zbmath.org/?q=an%3A1133.35075
UR  - https://doi.org/10.5802/aif.2338
DO  - 10.5802/aif.2338
LA  - en
ID  - AIF_2007__57_7_2401_0
ER  - 
Marklof, Jens. Spectral theta series of operators with periodic bicharacteristic flow. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2401-2427. doi : 10.5802/aif.2338. http://archive.numdam.org/articles/10.5802/aif.2338/

[1] Besse, A. L. Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-New York, 1978 | MR 496885 | Zbl 0387.53010

[2] Chazarain, J. Formule de Poisson pour les variétés riemanniennes, Invent. Math., Volume 24 (1974), pp. 65-82 | Article | MR 343320 | Zbl 0281.35028

[3] Colin de Verdière, Y. Spectre du laplacien et longueurs des géodésiques périodiques. I., Compositio Math., Volume 27 (1973), pp. 83-106 | Numdam | MR 348798 | Zbl 0272.53034

[4] Colin de Verdière, Y. Spectre du laplacien et longueurs des géodésiques périodiques. II., Compositio Math., Volume 27 (1973), pp. 159-184 | Numdam | MR 1557068 | Zbl 0281.53036

[5] Colin de Verdière, Y. Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., Volume 54 (1979) no. 3, pp. 508-522 | Article | MR 543346 | Zbl 0459.58014

[6] Duistermaat, J. J.; Guillemin, V. W. The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | Article | MR 405514 | Zbl 0307.35071

[7] Eskin, A.; McMullen, C. Mixing, counting, and equidistribution in Lie groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | Article | MR 1230290 | Zbl 0798.11025

[8] Fiedler, H.; Jurkat, W.; Körner, O. Asymptotic expansions of finite theta series, Acta Arithm., Volume 32 (1977), pp. 129-146 | MR 563894 | Zbl 0308.10021

[9] Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products, Academic Press, New York-London, 1965 | Zbl 0918.65001

[10] Guillemin, V. Some spectral results for the Laplace operator with potential on the n-sphere, Advances in Math., Volume 27 (1978) no. 3, pp. 273-286 | Article | MR 478245 | Zbl 0433.35052

[11] Guillemin, V. Some spectral results on rank one symmetric spaces, Advances in Math., Volume 28 (1978) no. 2, pp. 129-137 | Article | MR 494331 | Zbl 0441.58012

[12] Gutzwiller, M. C. Chaos in classical and quantum mechanics. Interdisciplinary Applied Mathematics, 1., Springer-Verlag, New York, 1990 | MR 1077246 | Zbl 0727.70029

[13] Jurkat, W. B.; van Horne, J. W. The proof of the central limit theorem for theta sums, Duke Math. J. (1981), pp. 873-885 | Article | MR 782582 | Zbl 0491.10027

[14] Jurkat, W. B.; van Horne, J. W. On the central limit theorem for theta series, Michigan Math. J., Volume 29 (1982), pp. 65-77 | Article | MR 646372 | Zbl 0493.10042

[15] Jurkat, W. B.; van Horne, J. W. The uniform central limit theorem for theta sums, Duke Math. J., Volume 50 (1983), pp. 649-666 | Article | MR 714822 | Zbl 0524.10029

[16] Kleinbock, D. Y.; Margulis, G. A. Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 451-494 | Article | MR 1719827 | Zbl 0934.22016

[17] Lion, G.; Vergne, M. The Weil representation, Maslov index and theta series, Progress in Mathematics, 6. Birkhäuser, Boston, Mass., 1980 | MR 573448 | Zbl 0444.22005

[18] Marklof, J. Spectral form factors of rectangle billiards, Comm. Math. Phys., Volume 199 (1998) no. 1, pp. 169-202 | Article | MR 1660203 | Zbl 0920.58036

[19] Marklof, J. Limit theorems for theta sums, Duke Math. J., Volume 97 (1999) no. 1, pp. 127-153 | Article | MR 1682276 | Zbl 0965.11036

[20] Marklof, J. Theta sums, Eisenstein series, and the semiclassical dynamics of a precessing spin, Emerging applications of number theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., Springer, New York, Volume 109 (1999), pp. 405-450 | MR 1691543 | Zbl 1071.81518

[21] Marklof, J. Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math., Volume 158 (2003) no. 2, pp. 419-471 | Article | MR 2018926 | Zbl 1106.11018

[22] Morris, D. W. Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005 | Zbl 1069.22003

[23] Sarnak, P. Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 719-739 | Article | MR 634284 | Zbl 0501.58027

[24] Selberg, A. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), Volume 20 (1956), pp. 47-87 | MR 88511 | Zbl 0072.08201

[25] Shah, N. A. Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 2, pp. 105-125 | Article | MR 1403756 | Zbl 0864.22004

[26] Strömbergsson, A. On the uniform equidistribution of long closed horocycles, Duke Math. J., Volume 123 (2004) no. 3, pp. 507-547 | Article | MR 2068968 | Zbl 1060.37023

[27] Sullivan, D. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., Volume 149 (1982) no. 1, pp. 215-237 | Article | MR 688349 | Zbl 0517.58028

[28] Uribe, A.; Zelditch, S. Spectral statistics on Zoll surfaces, Comm. Math. Phys., Volume 154 (1993) no. 2, pp. 313-346 | Article | MR 1224082 | Zbl 0791.58102

[29] Weinstein, A. Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., Volume 44 (1977) no. 4, pp. 883-892 | Article | MR 482878 | Zbl 0385.58013

[30] Zelditch, S. Fine structure of Zoll spectra, J. Funct. Anal., Volume 143 (1997) no. 2, pp. 415-460 | Article | MR 1428823 | Zbl 0870.58103

Cité par Sources :